Exponential ergodicity for singular reflecting McKean-Vlasov SDEs

被引:9
作者
Wang, Feng-Yu [1 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
关键词
Exponential ergodicity; Reflecting McKean-Vlasov SDEs; Weighted variation norm; Non-symmetric singular granular media equations; STOCHASTIC DIFFERENTIAL-EQUATIONS;
D O I
10.1016/j.spa.2023.03.009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
By refining a recent result of Xie and Zhang specialIntscript we prove the exponential ergodicity under a weighted variation norm for singular SDEs with drift containing a local integrable term and a coercive term. This result is then extended to singular reflecting SDEs as well as singular McKean-Vlasov SDEs with or without reflection. The exponential ergodicity in the relative entropy and (weighted) Wasserstein distances are also studied for reflecting McKean-Vlasov SDEs. The main results are illustrated by non-symmetric singular granular media equations.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:265 / 293
页数:29
相关论文
共 28 条
  • [1] LOCAL BEHAVIOR OF SOLUTIONS OF QUASILINEAR PARABOLIC EQUATIONS
    ARONSON, DG
    SERRIN, J
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1967, 25 (02) : 81 - &
  • [2] FROM NONLINEAR FOKKER-PLANCK EQUATIONS TO SOLUTIONS OF DISTRIBUTION DEPENDENT SDE
    Barbu, Viorel
    Roeckner, Michael
    [J]. ANNALS OF PROBABILITY, 2020, 48 (04) : 1902 - 1920
  • [3] Hypercontractivity of Hamilton-Jacobi equations
    Bobkov, SG
    Gentil, I
    Ledoux, M
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (07): : 669 - 696
  • [4] Bogachev V.I., 2015, Math. Surveys Monogr., V207
  • [5] ON ERGODIC PROPERTIES OF NONLINEAR MARKOV CHAINS AND STOCHASTIC MCKEAN-VLASOV EQUATIONS
    Butkovsky, O. A.
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2014, 58 (04) : 661 - 674
  • [6] Carrillo JA, 2003, REV MAT IBEROAM, V19, P971
  • [7] Da Prato G., 1996, Ergodicity for Infinite Dimensional Systems, V229
  • [8] Exponential and uniform ergodicity of Markov processes
    Down, D
    Meyn, SP
    Tweedie, RL
    [J]. ANNALS OF PROBABILITY, 1995, 23 (04) : 1671 - 1691
  • [9] QUANTITATIVE HARRIS-TYPE THEOREMS FOR DIFFUSIONS AND MCKEAN VLASOV PROCESSES
    Eberle, Andreas
    Guillin, Arnaud
    Zimmer, Raphael
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (10) : 7135 - 7173
  • [10] UNIFORM POINCARE AND LOGARITHMIC SOBOLEV INEQUALITIES FOR MEAN FIELD PARTICLE SYSTEMS
    Guillin, Arnaud
    Liu, Wei
    Wu, Liming
    Zhang, Chaoen
    [J]. ANNALS OF APPLIED PROBABILITY, 2022, 32 (03) : 1590 - 1614