Emerging roles of TFE3 in metabolic regulation

被引:12
作者
Li, Xingyu [1 ,2 ]
Chen, Yongming [1 ,2 ]
Gong, Siqiao [1 ,2 ]
Chen, Huixia [1 ,2 ]
Liu, Huafeng [1 ,2 ]
Li, Xiaoyu [1 ,2 ]
Hao, Junfeng [1 ,2 ]
机构
[1] Guangdong Med Univ, Inst Nephrol, Affiliated Hosp, Zhanjiang 524001, Peoples R China
[2] Guangdong Med Univ, Guangdong Prov Key Lab Autophagy & Major Chron Non, Affiliated Hosp, Zhanjiang 524001, Peoples R China
基金
中国国家自然科学基金;
关键词
RENAL-CELL CARCINOMA; LIPID-METABOLISM; ADIPOSE-TISSUE; TRANSCRIPTION FACTORS; ENERGY-METABOLISM; MTOR PATHWAY; AUTOPHAGY; GLUCOSE; MUSCLE; MOUSE;
D O I
10.1038/s41420-023-01395-0
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
TFE3 is a member of the MiT family of the bHLH-leucine zipper transcription factor. We previously focused on the role of TFE3 in autophagy and cancer. Recently, an increasing number of studies have revealed that TFE3 plays an important role in metabolic regulation. TFE3 participates in the metabolism of energy in the body by regulating pathways such as glucose and lipid metabolism, mitochondrial metabolism, and autophagy. This review summarizes and discusses the specific regulatory mechanisms of TFE3 in metabolism. We determined both the direct regulation of TFE3 on metabolically active cells, such as hepatocytes and skeletal muscle cells, and the indirect regulation of TFE3 through mitochondrial quality control and the autophagy-lysosome pathway. The role of TFE3 in tumor cell metabolism is also summarized in this review. Understanding the diverse roles of TFE3 in metabolic processes can provide new avenues for the treatment of some metabolism-related disorders.
引用
收藏
页数:9
相关论文
共 101 条
[1]   PGC-1 coactivators and skeletal muscle adaptations in health and disease [J].
Arany, Zolt .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2008, 18 (05) :426-434
[2]   PGC1α and mitochondrial metabolism - emerging concepts and relevance in ageing and neurodegenerative disorders [J].
Austin, Shane ;
St-Pierre, Julie .
JOURNAL OF CELL SCIENCE, 2012, 125 (21) :4963-4971
[3]   Folliculin Regulates Osteoclastogenesis Through Metabolic Regulation [J].
Baba, Masaya ;
Endoh, Mitsuhiro ;
Ma, Wenjuan ;
Toyama, Hirofumi ;
Hirayama, Akiyoshi ;
Nishikawa, Keizo ;
Takubo, Keiyo ;
Hano, Hiroyuki ;
Hasumi, Hisashi ;
Umemoto, Terumasa ;
Hashimoto, Michihiro ;
Irie, Nobuko ;
Esumi, Chiharu ;
Kataoka, Miho ;
Nakagata, Naomi ;
Soga, Tomoyoshi ;
Yao, Masahiro ;
Kamba, Tomomi ;
Minami, Takashi ;
Ishii, Masaru ;
Suda, Toshio .
JOURNAL OF BONE AND MINERAL RESEARCH, 2018, 33 (10) :1785-1798
[4]   The Role of PARP-1 and PARP-2 Enzymes in Metabolic Regulation and Disease [J].
Bai, Peter ;
Canto, Carles .
CELL METABOLISM, 2012, 16 (03) :290-295
[5]   Exit from Pluripotency Is Gated by Intracellular Redistribution of the bHLH Transcription Factor Tfe3 [J].
Betschinger, Joerg ;
Nichols, Jennifer ;
Dietmann, Sabine ;
Corrin, Philip D. ;
Paddison, Patrick J. ;
Smith, Austin .
CELL, 2013, 153 (02) :335-347
[6]   ATP synthesis and storage [J].
Bonora, Massimo ;
Patergnani, Simone ;
Rimessi, Alessandro ;
De Marchi, Elena ;
Suski, Jan M. ;
Bononi, Angela ;
Giorgi, Carlotta ;
Marchi, Saverio ;
Missiroli, Sonia ;
Poletti, Federica ;
Wieckowski, Mariusz R. ;
Pinton, Paolo .
PURINERGIC SIGNALLING, 2012, 8 (03) :343-357
[7]   SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1 [J].
Bouras, T ;
Fu, MF ;
Sauve, AA ;
Wang, F ;
Quong, AA ;
Perkins, ND ;
Hay, RT ;
Gu, W ;
Pestell, RG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (11) :10264-10276
[8]   Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function [J].
Bugge, Anne ;
Feng, Dan ;
Everett, Logan J. ;
Briggs, Erika R. ;
Mullican, Shannon E. ;
Wang, Fenfen ;
Jager, Jennifer ;
Lazar, Mitchell A. .
GENES & DEVELOPMENT, 2012, 26 (07) :657-667
[9]   MiT Family Translocation Renal Cell Carcinoma: from the Early Descriptions to the Current Knowledge [J].
Calio, Anna ;
Segala, Diego ;
Munari, Enrico ;
Brunelli, Matteo ;
Martignoni, Guido .
CANCERS, 2019, 11 (08)
[10]   Hexokinase-mitochondrial interactions regulate glucose metabolism differentially in adult and neonatal cardiac myocytes [J].
Calmettes, Guillaume ;
John, Scott A. ;
Weiss, James N. ;
Ribalet, Bernard .
JOURNAL OF GENERAL PHYSIOLOGY, 2013, 142 (04) :425-436