Fermions on curved backgrounds of matrix models

被引:11
作者
Battista, Emmanuele [1 ]
Steinacker, Harold C. [1 ]
机构
[1] Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
DIRAC-EQUATION; GENERAL-RELATIVITY; SPIN PRECESSION; YANG-MILLS; PARTICLES; TORSION;
D O I
10.1103/PhysRevD.107.046021
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We discuss the propagation of fermions on generic, curved branes in Ishibashi-Kawai-Kitazawa-Tsuchiya-type matrix models. The Dirac operator can be understood either in terms of a Weitzenbock connection, or in terms of the Levi-Civita connection with an extra torsion term. We discuss in detail the coupling of spin to the background geometry using the Jeffreys-Wentzel-Kramers-Brillouin approximation. Despite the absence of local Lorentz invariance in the underlying Ishibashi-Kawai-Kitazawa-Tsuchiya framework, our results agree with the expectations of Einstein-Cartan theory, and differ from general relativity only by an extra coupling to the totally antisymmetric part of the torsion. The case of Friedmann-Lemaitre-Robertson-Walker cosmic solutions is discussed as a case.
引用
收藏
页数:14
相关论文
共 47 条
[11]  
Carroll Sean M, 2019, Spacetime and Geometry: An Introduction to General Relativity
[12]   Matrix model approach to cosmology [J].
Chaney, A. ;
Lu, Lei ;
Stern, A. .
PHYSICAL REVIEW D, 2016, 93 (06)
[13]   On the fermion spectrum of spontaneously generated fuzzy extra dimensions with fluxes [J].
Chatzistavrakidis, Athanasios ;
Steinacker, Harold ;
Zoupanos, George .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2010, 58 (06) :537-552
[14]   Dirac equations in curved space-time vs. Papapetrou spinning particles [J].
Cianfrani, F. ;
Montani, G. .
EPL, 2008, 84 (03)
[15]   REPRESENTATIONS OF DIRAC EQUATION IN GENERAL RELATIVITY [J].
DEOLIVEIRA, CG ;
TIOMNO, J .
NUOVO CIMENTO, 1962, 24 (04) :672-+
[16]  
DESABBATA V, 1985, INTRO GRAVITATION
[17]   Spin, torsion and violation of null energy condition in traversable wormholes [J].
Di Grezia, Elisabetta ;
Battista, Emmanuele ;
Manfredonia, Mattia ;
Miele, Gennaro .
EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (12)
[18]   DYNAMICS OF EXTENDED BODIES IN GENERAL RELATIVITY .1. MOMENTUM AND ANGULAR MOMENTUM [J].
DIXON, WG .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1970, 314 (1519) :499-&
[19]   Exploring the gravity sector of emergent higher-spin gravity: effective action and a solution [J].
Fredenhagen, Stefan ;
Steinacker, Harold C. .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (05)
[20]  
Hartle J. B., 2003, Gravity: An Introduction to Einsteins General Relativity