Cramer-type moderate deviation of normal approximation for unbounded exchangeable pairs

被引:3
|
作者
Zhang, Zhuo-Song [1 ]
机构
[1] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 117546, Singapore
基金
澳大利亚研究理事会;
关键词
Stein?s method; exchangeable pair approach; Cram?r-type moderate deviation; sums of local statistics; general Curie-Weiss model; STEINS METHOD; NONNORMAL APPROXIMATION; POISSON APPROXIMATION; RATES; CONVERGENCE; THEOREMS; BOUNDS; MODEL; SUMS; CLT;
D O I
10.3150/21-BEJ1457
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In Stein's method, the exchangeable pair approach is commonly used to estimate the approximation errors in normal approximation. In this paper, we establish a Cramer-type moderate deviation theorem of normal approxi-mation for unbounded exchangeable pairs. As applications, Cramer-type moderate deviation theorems for the sums of local statistics and general Curie-Weiss model are obtained.
引用
收藏
页码:274 / 299
页数:26
相关论文
共 15 条
  • [1] CRAMER-TYPE MODERATE DEVIATION THEOREMS FOR NONNORMAL APPROXIMATION
    Shao, Qi-Man
    Zhang, Mengchen
    Zhang, Zhuo-Song
    ANNALS OF APPLIED PROBABILITY, 2021, 31 (01) : 247 - 283
  • [2] A refined Cramer-type moderate deviation for sums of local statistics
    Fang, Xiao
    Luo, Li
    Shao, Qi-Man
    BERNOULLI, 2020, 26 (03) : 2319 - 2352
  • [3] BERRY-ESSEEN BOUNDS OF NORMAL AND NONNORMAL APPROXIMATION FOR UNBOUNDED EXCHANGEABLE PAIRS
    Shao, Qi-Man
    Zhang, Zhuo-Song
    ANNALS OF PROBABILITY, 2019, 47 (01) : 61 - 108
  • [4] Cramer-type moderate deviation for quadratic forms with a fast rate
    Fang, Xiao
    Liu, Song-Hao
    Shao, Qi-Man
    BERNOULLI, 2023, 29 (03) : 2466 - 2491
  • [5] Normal approximation via non-linear exchangeable pairs
    Doebler, Christian
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2023, 20 : 167 - 224
  • [6] Central limit theorem and self-normalized Cramer-type moderate deviation for Euler-Maruyama scheme
    Lu, Jianya
    Tan, Yuzhen
    Xu, Lihu
    BERNOULLI, 2022, 28 (02) : 937 - 964
  • [7] Multivariate normal approximation using exchangeable pairs
    Chatterjee, Sourav
    Meckes, Elizabeth
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2008, 4 : 257 - 283
  • [8] RANDOM SUBGRAPH COUNTS AND U-STATISTICS: MULTIVARIATE NORMAL APPROXIMATION VIA EXCHANGEABLE PAIRS AND EMBEDDING
    Reinert, Gesine
    Rollin, Adrian
    JOURNAL OF APPLIED PROBABILITY, 2010, 47 (02) : 378 - 393
  • [9] Cramer type moderate deviation theorems for self-normalized processes
    Shao, Qi-Man
    Zhou, Wen-Xin
    BERNOULLI, 2016, 22 (04) : 2029 - 2079
  • [10] FURTHER REFINEMENT OF SELF-NORMALIZED CRAMER-TYPE MODERATE DEVIATIONS
    Sang, Hailin
    Ge, Lin
    ESAIM-PROBABILITY AND STATISTICS, 2017, 21 : 201 - 219