A Polymer Canvas with the Stiffness of the Bone Matrix to Study and Control Mesenchymal Stem Cell Response

被引:3
作者
Zanut, Alessandra [1 ]
Li, Rui [1 ]
Deng, Ru [2 ]
Liu, Xiangyu [1 ]
Rejhon, Martin [1 ]
Chen, Weiqiang [1 ]
Weck, Marcus [2 ]
de Peppo, Giuseppe Maria [1 ,3 ,4 ]
Riedo, Elisa [1 ]
机构
[1] NYU, Tandon Sch Engn, 6 Metrotech, Brooklyn, NY 11201 USA
[2] NYU, Dept Chem, Silver Ctr Block,100 Washington Sq E, New York, NY 10003 USA
[3] New York Stem Cell Fdn Res Inst, 619 West 54th St, New York, NY 10019 USA
[4] Mirimus Inc, 760 Parkside Ave, Brooklyn, NY 11226 USA
基金
美国国家科学基金会;
关键词
biomaterials; biomimicry; bones; extracellular matrices; induced mesenchymal stem cells; polymers; stiffnesses; DIFFERENTIATION; ADHESION; RUNX2;
D O I
10.1002/adhm.202201503
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Reproducing in vitro the complex multiscale physical features of human tissues creates novel biomedical opportunities and fundamental understanding of cell-environment interfaces and interactions. While stiffness has been recognized as a key driver of cell behavior, systematic studies on the role of stiffness have been limited to values in the KPa-MPa range, significantly below the stiffness of bone. Here, a platform enabling the tuning of the stiffness of a biocompatible polymeric interface up to values characteristic of human bone is reported, which are in the GPa range, by using extremely thin polymer films on glass and cross-linking the films using ultraviolet (UV) light irradiation. It is shown that a higher stiffness is related to better adhesion, proliferation, and osteogenic differentiation, and that it is possible to switch on/off cell attachment and growth by solely tuning the stiffness of the interface, without any surface chemistry or topography modification. Since the stiffness is tuned directly by UV irradiation, this platform is ideal for rapid and simple fabrication of stiffness patterns and gradients, thus representing an innovative tool for combinatorial studies of the synergistic effect of tissue environmental cues on cell behavior, and creates new opportunities for next-generation biosensors, single-cell patterning, and lab-on-a-chip devices.
引用
收藏
页数:8
相关论文
共 43 条
  • [1] Thermochemical scanning probe lithography of protein gradients at the nanoscale
    Albisetti, E.
    Carroll, K. M.
    Lu, X.
    Curtis, J. E.
    Petti, D.
    Bertacco, R.
    Riedo, E.
    [J]. NANOTECHNOLOGY, 2016, 27 (31)
  • [2] Thermal scanning probe lithography
    Albisetti, Edoardo
    Calo, Annalisa
    Zanut, Alessandra
    Zheng, Xiaorui
    de Peppo, Giuseppe Maria
    Riedo, Elisa
    [J]. NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01):
  • [3] Collagen nanofibril self-assembly on a natural polymeric material for the osteoinduction of stem cells in vitro and biocompatibility in vivo
    Aravamudhan, A.
    Ramos, D. M.
    Jenkins, N. A.
    Dyment, N. A.
    Sanders, M. M.
    Rowe, D. W.
    Kumbar, S. G.
    [J]. RSC ADVANCES, 2016, 6 (84): : 80851 - 80866
  • [4] CALCULATION OF THERMAL NOISE IN ATOMIC-FORCE MICROSCOPY
    BUTT, HJ
    JASCHKE, M
    [J]. NANOTECHNOLOGY, 1995, 6 (01) : 1 - 7
  • [5] Elasticity measurement of living cells with an atomic force microscope: data acquisition and processing
    Carl, Philippe
    Schillers, Hermann
    [J]. PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2008, 457 (02): : 551 - 559
  • [6] Fabricating Nanoscale Chemical Gradients with ThermoChemical NanoLithography
    Carroll, Keith M.
    Giordano, Anthony J.
    Wang, Debin
    Kodali, Vamsi K.
    Scrimgeour, Jan
    King, William P.
    Marder, Seth R.
    Riedo, Elisa
    Curtis, Jennifer E.
    [J]. LANGMUIR, 2013, 29 (27) : 8675 - 8682
  • [7] Å-Indentation for non-destructive elastic moduli measurements of supported ultra-hard ultra-thin films and nanostructures
    Cellini, Filippo
    Gao, Yang
    Riedo, Elisa
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [8] Biomimetic mineralized microenvironment stiffness regulated BMSCs osteogenic differentiation through cytoskeleton mediated mechanical signaling transduction
    Chen, Lu
    Wu, Chengheng
    Wei, Dan
    Chen, Suping
    Xiao, Zhanwen
    Zhu, Hua
    Luo, Hongrong
    Sun, Jing
    Fan, Hongsong
    [J]. MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2021, 119
  • [9] Tuning surface properties of bone biomaterials to manipulate osteoblastic cell adhesion and the signaling pathways for the enhancement of early osseointegration
    Chen, Shoucheng
    Guo, Yuanlong
    Liu, Runheng
    Wu, Shiyu
    Fang, Jinghan
    Huang, Baoxin
    Li, Zhipeng
    Chen, Zhuofan
    Chen, Zetao
    [J]. COLLOIDS AND SURFACES B-BIOINTERFACES, 2018, 164 : 58 - 69
  • [10] The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder
    Dalby, Matthew J.
    Gadegaard, Nikolaj
    Tare, Rahul
    Andar, Abhay
    Riehle, Mathis O.
    Herzyk, Pawel
    Wilkinson, Chris D. W.
    Oreffo, Richard O. C.
    [J]. NATURE MATERIALS, 2007, 6 (12) : 997 - 1003