Essential finite generation of extensions of valuation rings

被引:1
作者
Datta, Rankeya [1 ,2 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO USA
[2] Univ Missouri, Dept Math, 202 Math Sci Bldg,810 East Rollins St, Columbia, MO 65211 USA
关键词
defect; finite generation; Henselization; ramification; valuations; LOCAL UNIFORMIZATION;
D O I
10.1002/mana.202100190
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a generically finite local extension of valuation rings V subset of W$V \subset W$, the question of whether W is the localization of a finitely generated V-algebra is significant for approaches to the problem of local uniformization of valuations using ramification theory. Hagen Knaf proposed a characterization of when W is essentially of finite type over V in terms of classical invariants of the extension of associated valuations. Knaf's conjecture has been verified in important special cases by Cutkosky and Novacoski using local uniformization of Abhyankar valuations and resolution of singularities of excellent surfaces in arbitrary characteristic, and by Cutkosky for valuation rings of function fields of characteristic 0 using embedded resolution of singularities. In this paper, we prove Knaf's conjecture in full generality.
引用
收藏
页码:1041 / 1055
页数:15
相关论文
共 14 条
[1]  
[Anonymous], 2018, Stacks Project
[2]  
Atiyah M., 1969, INTRO COMMUTATIVE AL
[3]  
Bourbaki N., 1998, Commutative Algebra
[4]  
Cutkosky S.D., 2019, ESSENTIAL FINITE GEN
[5]   Local Uniformization of Abhyankar Valuations [J].
Cutkosky, Steven Dale .
MICHIGAN MATHEMATICAL JOURNAL, 2022, 71 (04) :859-891
[6]   Essentially finite generation of valuation rings in terms of classical invariants [J].
Cutkosky, Steven Dale ;
Novacoski, Josnei .
MATHEMATISCHE NACHRICHTEN, 2021, 294 (01) :15-37
[7]  
Datta R., 2018, THESIS U MICHIGAN
[8]   Frobenius and valuation rings [J].
Datta, Rankeya ;
Smith, Karen E. .
ALGEBRA & NUMBER THEORY, 2016, 10 (05) :1057-1090
[9]   Abhyankar places admit local uniformization in any characteristic [J].
Knaf, H ;
Kuhlmann, FV .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2005, 38 (06) :833-846
[10]   Every place admits local uniformization in a finite extension of the function field [J].
Knaf, Hagen ;
Kuhlmann, Franz-Viktor .
ADVANCES IN MATHEMATICS, 2009, 221 (02) :428-453