Testing for Phylogenetic Signal in Single-Cell RNA-Seq Data

被引:3
|
作者
Moravec, Jiri C. [1 ,2 ,6 ]
Lanfear, Robert [3 ]
Spector, David L. [4 ]
Diermeier, Sarah D. [5 ]
Gavryushkin, Alex [2 ]
机构
[1] Univ Otago, Dept Comp Sci, Dunedin, New Zealand
[2] Univ Canterbury, Sch Math & Stat, Christchurch, New Zealand
[3] Australian Natl Univ, Res Sch Biol, Div Ecol & Evolut, Canberra, Australia
[4] Cold Spring Harbor Lab, New York, NY USA
[5] Univ Otago, Dept Biochem, Dunedin, New Zealand
[6] Univ Otago, Dept Comp Sci, Dunedin 8140, New Zealand
基金
美国国家卫生研究院;
关键词
cancer; phylogenetics; RNA-seq; single cell; MISSING DATA; MAXIMUM-LIKELIHOOD; STOCHASTIC-MODELS; CANCER EVOLUTION; TREES; HETEROGENEITY; METASTASIS; COALESCENT; TUMORS; GENES;
D O I
10.1089/cmb.2022.0357
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Phylogenetic methods are emerging as a useful tool to understand cancer evolutionary dynamics, including tumor structure, heterogeneity, and progression. Most currently used approaches utilize either bulk whole genome sequencing or single-cell DNA sequencing and are based on calling copy number alterations and single nucleotide variants (SNVs). Single-cell RNA sequencing (scRNA-seq) is commonly applied to explore differential gene expression of cancer cells throughout tumor progression. The method exacerbates the single-cell sequencing problem of low yield per cell with uneven expression levels. This accounts for low and uneven sequencing coverage and makes SNV detection and phylogenetic analysis challenging. In this article, we demonstrate for the first time that scRNA-seq data contain sufficient evolutionary signal and can also be utilized in phylogenetic analyses. We explore and compare results of such analyses based on both expression levels and SNVs called from scRNA-seq data. Both techniques are shown to be useful for reconstructing phylogenetic relationships between cells, reflecting the clonal composition of a tumor. Both standardized expression values and SNVs appear to be equally capable of reconstructing a similar pattern of phylogenetic relationship. This pattern is stable even when phylogenetic uncertainty is taken in account. Our results open up a new direction of somatic phylogenetics based on scRNA-seq data. Further research is required to refine and improve these approaches to capture the full picture of somatic evolutionary dynamics in cancer.
引用
收藏
页码:518 / 537
页数:20
相关论文
共 50 条
  • [31] Deep Batch Integration and Denoise of Single-Cell RNA-Seq Data
    Qin, Lu
    Zhang, Guangya
    Zhang, Shaoqiang
    Chen, Yong
    ADVANCED SCIENCE, 2024, 11 (29)
  • [32] An active learning approach for clustering single-cell RNA-seq data
    Lin, Xiang
    Liu, Haoran
    Wei, Zhi
    Roy, Senjuti Basu
    Gao, Nan
    LABORATORY INVESTIGATION, 2022, 102 (03) : 227 - 235
  • [33] scmap: projection of single-cell RNA-seq data across data sets
    Vladimir Yu Kiselev
    Andrew Yiu
    Martin Hemberg
    Nature Methods, 2018, 15 : 359 - 362
  • [34] Generalized Cell Type Annotation and Discovery for Single-Cell RNA-Seq Data
    Zhai, Yuyao
    Chen, Liang
    Deng, Minghua
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 4, 2023, : 5402 - 5410
  • [35] A Comparison for Dimensionality Reduction Methods of Single-Cell RNA-seq Data
    Xiang, Ruizhi
    Wang, Wencan
    Yang, Lei
    Wang, Shiyuan
    Xu, Chaohan
    Chen, Xiaowen
    FRONTIERS IN GENETICS, 2021, 12
  • [36] Online Single-cell RNA-seq Data Denoising with Transfer Learning
    Kang, Bowei
    Abeysinghe, Eroma
    Agarwal, Divyansh
    Wang, Quanli
    Pamidighantam, Sudhakar
    Huang, Mo
    Zhang, Nancy R.
    Wang, Jingshu
    PRACTICE AND EXPERIENCE IN ADVANCED RESEARCH COMPUTING 2020, PEARC 2020, 2020, : 469 - 472
  • [37] Identification of innate lymphoid cells in single-cell RNA-Seq data
    Madeleine Suffiotti
    Santiago J. Carmona
    Camilla Jandus
    David Gfeller
    Immunogenetics, 2017, 69 : 439 - 450
  • [38] Detection and removal of barcode swapping in single-cell RNA-seq data
    Jonathan A. Griffiths
    Arianne C. Richard
    Karsten Bach
    Aaron T. L. Lun
    John C. Marioni
    Nature Communications, 9
  • [39] A web server for comparative analysis of single-cell RNA-seq data
    Amir Alavi
    Matthew Ruffalo
    Aiyappa Parvangada
    Zhilin Huang
    Ziv Bar-Joseph
    Nature Communications, 9
  • [40] Identification of innate lymphoid cells in single-cell RNA-Seq data
    Suffiotti, Madeleine
    Carmona, Santiago J.
    Jandus, Camilla
    Gfeller, David
    IMMUNOGENETICS, 2017, 69 (07) : 439 - 450