Testing for Phylogenetic Signal in Single-Cell RNA-Seq Data

被引:3
|
作者
Moravec, Jiri C. [1 ,2 ,6 ]
Lanfear, Robert [3 ]
Spector, David L. [4 ]
Diermeier, Sarah D. [5 ]
Gavryushkin, Alex [2 ]
机构
[1] Univ Otago, Dept Comp Sci, Dunedin, New Zealand
[2] Univ Canterbury, Sch Math & Stat, Christchurch, New Zealand
[3] Australian Natl Univ, Res Sch Biol, Div Ecol & Evolut, Canberra, Australia
[4] Cold Spring Harbor Lab, New York, NY USA
[5] Univ Otago, Dept Biochem, Dunedin, New Zealand
[6] Univ Otago, Dept Comp Sci, Dunedin 8140, New Zealand
基金
美国国家卫生研究院;
关键词
cancer; phylogenetics; RNA-seq; single cell; MISSING DATA; MAXIMUM-LIKELIHOOD; STOCHASTIC-MODELS; CANCER EVOLUTION; TREES; HETEROGENEITY; METASTASIS; COALESCENT; TUMORS; GENES;
D O I
10.1089/cmb.2022.0357
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Phylogenetic methods are emerging as a useful tool to understand cancer evolutionary dynamics, including tumor structure, heterogeneity, and progression. Most currently used approaches utilize either bulk whole genome sequencing or single-cell DNA sequencing and are based on calling copy number alterations and single nucleotide variants (SNVs). Single-cell RNA sequencing (scRNA-seq) is commonly applied to explore differential gene expression of cancer cells throughout tumor progression. The method exacerbates the single-cell sequencing problem of low yield per cell with uneven expression levels. This accounts for low and uneven sequencing coverage and makes SNV detection and phylogenetic analysis challenging. In this article, we demonstrate for the first time that scRNA-seq data contain sufficient evolutionary signal and can also be utilized in phylogenetic analyses. We explore and compare results of such analyses based on both expression levels and SNVs called from scRNA-seq data. Both techniques are shown to be useful for reconstructing phylogenetic relationships between cells, reflecting the clonal composition of a tumor. Both standardized expression values and SNVs appear to be equally capable of reconstructing a similar pattern of phylogenetic relationship. This pattern is stable even when phylogenetic uncertainty is taken in account. Our results open up a new direction of somatic phylogenetics based on scRNA-seq data. Further research is required to refine and improve these approaches to capture the full picture of somatic evolutionary dynamics in cancer.
引用
收藏
页码:518 / 537
页数:20
相关论文
共 50 条
  • [31] Optimal Gene Filtering for Single-Cell data (OGFSC)-a gene filtering algorithm for single-cell RNA-seq data
    Hao, Jie
    Cao, Wei
    Huang, Jian
    Zou, Xin
    Han, Ze-Guang
    BIOINFORMATICS, 2019, 35 (15) : 2602 - 2609
  • [32] Quality control of single-cell RNA-seq by SinQC
    Jiang, Peng
    Thomson, James A.
    Stewart, Ron
    BIOINFORMATICS, 2016, 32 (16) : 2514 - 2516
  • [33] Recent Developments in Single-Cell RNA-Seq of Microorganisms
    Zhang, Yi
    Gao, Jiaxin
    Huang, Yanyi
    Wang, Jianbin
    BIOPHYSICAL JOURNAL, 2018, 115 (02) : 173 - 180
  • [34] Exploring Additional Valuable Information From Single-Cell RNA-Seq Data
    Li, Yunjin
    Xu, Qiyue
    Wu, Duojiao
    Chen, Geng
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2020, 8
  • [35] Polygenic enrichment distinguishes disease associations of individual cells in single-cell RNA-seq data
    Zhang, Martin Jinye
    Hou, Kangcheng
    Dey, Kushal K.
    Sakaue, Saori
    Jagadeesh, Karthik A.
    Weinand, Kathryn
    Taychameekiatchai, Aris
    Rao, Poorvi
    Pisco, Angela Oliveira
    Zou, James
    Wang, Bruce
    Gandal, Michael
    Raychaudhuri, Soumya
    Pasaniuc, Bogdan
    Price, Alkes L.
    NATURE GENETICS, 2022, 54 (10) : 1572 - +
  • [36] Consensus clustering of single-cell RNA-seq data by enhancing network affinity
    Cui, Yaxuan
    Zhang, Shaoqiang
    Liang, Ying
    Wang, Xiangyun
    Ferraro, Thomas N.
    Chen, Yong
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [37] Visualizing Single-Cell RNA-seq Data with Semisupervised Principal Component Analysis
    Liu, Zhenqiu
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (16) : 1 - 12
  • [38] Single-cell RNA-seq data clustering: A survey with performance comparison study
    Li, Ruiyi
    Guan, Jihong
    Zhou, Shuigeng
    JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2020, 18 (04)
  • [39] scCancer: a package for automated processing of single-cell RNA-seq data in cancer
    Guo, Wenbo
    Wang, Dongfang
    Wang, Shicheng
    Shan, Yiran
    Liu, Changyi
    Gu, Jin
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (03)
  • [40] Clustering single-cell RNA-seq data by rank constrained similarity learning
    Mei, Qinglin
    Li, Guojun
    Su, Zhengchang
    BIOINFORMATICS, 2021, 37 (19) : 3235 - 3242