Testing for Phylogenetic Signal in Single-Cell RNA-Seq Data

被引:3
|
作者
Moravec, Jiri C. [1 ,2 ,6 ]
Lanfear, Robert [3 ]
Spector, David L. [4 ]
Diermeier, Sarah D. [5 ]
Gavryushkin, Alex [2 ]
机构
[1] Univ Otago, Dept Comp Sci, Dunedin, New Zealand
[2] Univ Canterbury, Sch Math & Stat, Christchurch, New Zealand
[3] Australian Natl Univ, Res Sch Biol, Div Ecol & Evolut, Canberra, Australia
[4] Cold Spring Harbor Lab, New York, NY USA
[5] Univ Otago, Dept Biochem, Dunedin, New Zealand
[6] Univ Otago, Dept Comp Sci, Dunedin 8140, New Zealand
基金
美国国家卫生研究院;
关键词
cancer; phylogenetics; RNA-seq; single cell; MISSING DATA; MAXIMUM-LIKELIHOOD; STOCHASTIC-MODELS; CANCER EVOLUTION; TREES; HETEROGENEITY; METASTASIS; COALESCENT; TUMORS; GENES;
D O I
10.1089/cmb.2022.0357
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Phylogenetic methods are emerging as a useful tool to understand cancer evolutionary dynamics, including tumor structure, heterogeneity, and progression. Most currently used approaches utilize either bulk whole genome sequencing or single-cell DNA sequencing and are based on calling copy number alterations and single nucleotide variants (SNVs). Single-cell RNA sequencing (scRNA-seq) is commonly applied to explore differential gene expression of cancer cells throughout tumor progression. The method exacerbates the single-cell sequencing problem of low yield per cell with uneven expression levels. This accounts for low and uneven sequencing coverage and makes SNV detection and phylogenetic analysis challenging. In this article, we demonstrate for the first time that scRNA-seq data contain sufficient evolutionary signal and can also be utilized in phylogenetic analyses. We explore and compare results of such analyses based on both expression levels and SNVs called from scRNA-seq data. Both techniques are shown to be useful for reconstructing phylogenetic relationships between cells, reflecting the clonal composition of a tumor. Both standardized expression values and SNVs appear to be equally capable of reconstructing a similar pattern of phylogenetic relationship. This pattern is stable even when phylogenetic uncertainty is taken in account. Our results open up a new direction of somatic phylogenetics based on scRNA-seq data. Further research is required to refine and improve these approaches to capture the full picture of somatic evolutionary dynamics in cancer.
引用
收藏
页码:518 / 537
页数:20
相关论文
共 50 条
  • [1] Normalization Methods on Single-Cell RNA-seq Data: An Empirical Survey
    Lytal, Nicholas
    Ran, Di
    An, Lingling
    FRONTIERS IN GENETICS, 2020, 11
  • [2] An Efficient and Flexible Method for Deconvoluting Bulk RNA-Seq Data with Single-Cell RNA-Seq Data
    Sun, Xifang
    Sun, Shiquan
    Yang, Sheng
    CELLS, 2019, 8 (10)
  • [3] Resistant Fit Regression Normalization for Single-cell RNA-seq Data
    Kuang, Da
    Kim, Junhyong
    2020 IEEE 20TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2020), 2020, : 236 - 240
  • [4] A general and flexible method for signal extraction from single-cell RNA-seq data
    Risso, Davide
    Perraudeau, Fanny
    Gribkova, Svetlana
    Dudoit, Sandrine
    Vert, Jean-Philippe
    NATURE COMMUNICATIONS, 2018, 9
  • [5] FastProject: a tool for low-dimensional analysis of single-cell RNA-Seq data
    DeTomaso, David
    Yosef, Nir
    BMC BIOINFORMATICS, 2016, 17
  • [6] Uphyloplot2: visualizing phylogenetic trees from single-cell RNA-seq data
    Kurtenbach, Stefan
    Cruz, Anthony M.
    Rodriguez, Daniel A.
    Durante, Michael A.
    Harbour, J. William
    BMC GENOMICS, 2021, 22 (01)
  • [7] Evaluating imputation methods for single-cell RNA-seq data
    Yi Cheng
    Xiuli Ma
    Lang Yuan
    Zhaoguo Sun
    Pingzhang Wang
    BMC Bioinformatics, 24
  • [8] Analysis of Single-Cell RNA-seq Data by Clustering Approaches
    Zhu, Xiaoshu
    Li, Hong-Dong
    Guo, Lilu
    Wu, Fang-Xiang
    Wang, Jianxin
    CURRENT BIOINFORMATICS, 2019, 14 (04) : 314 - 322
  • [9] Challenges in unsupervised clustering of single-cell RNA-seq data
    Kiselev, Vladimir Yu
    Andrews, Tallulah S.
    Hemberg, Martin
    NATURE REVIEWS GENETICS, 2019, 20 (05) : 273 - 282
  • [10] Evaluating imputation methods for single-cell RNA-seq data
    Cheng, Yi
    Ma, Xiuli
    Yuan, Lang
    Sun, Zhaoguo
    Wang, Pingzhang
    BMC BIOINFORMATICS, 2023, 24 (01)