T-adic exponential sums over affinoids

被引:0
作者
Schmidt, Matthew [1 ]
机构
[1] SUNY Buffalo, Buffalo, NY 14260 USA
关键词
Exponential sums; T-adic sum; Newton polygon; NEWTON SLOPES;
D O I
10.1016/j.jnt.2022.04.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce and develop (pi 1/c, p)-adic Dwork theory for L -functions of exponential sums associated to one-variable rational functions, interpolating pk-order exponential sums over affinoids. Namely, we prove a generalization of the Dwork-Monsky-Reich trace formula and apply it to establish an analytic continuation of the C -function Cf (s, pi). We compute the lower (pi 1/c, p)-adic bound, the Hodge polygon, for this C -function. Along the way, we also show why a strictly pi-adic theory will not work in this case.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:409 / 435
页数:27
相关论文
共 21 条
  • [1] ON EXPONENTIAL SUMS IN FINITE FIELDS
    BOMBIERI, E
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1966, 88 (01) : 71 - &
  • [2] Bosch S, 2014, LECT NOTES MATH, V2105, P1, DOI 10.1007/978-3-319-04417-0
  • [3] Bosch S., 1984, NONARCHIMEDEAN ANAL, V261
  • [4] BOYARSKY M, 1984, ASTERISQUE, P129
  • [5] P-adic Banach spaces and families of modular forms
    Coleman, RF
    [J]. INVENTIONES MATHEMATICAE, 1997, 127 (03) : 417 - 479
  • [6] Newton slopes for Artin-Schreier-Witt towers
    Davis, Christopher
    Wan, Daqing
    Xiao, Liang
    [J]. MATHEMATISCHE ANNALEN, 2016, 364 (3-4) : 1451 - 1468
  • [7] DWORK B., 1982, Grundlehren der Math. Wissens-Chaften, V253
  • [8] FRESNEL J, 1984, ASTERISQUE, P140
  • [9] On slopes of L-functions of Zp-covers over the projective line
    Kosters, Michiel
    Zhu, Hui June
    [J]. JOURNAL OF NUMBER THEORY, 2018, 187 : 430 - 452
  • [10] The L-functions of Witt coverings
    Liu, Chunlei
    Wei, Dasheng
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2007, 255 (01) : 95 - 115