SOH estimation for lithium-ion batteries: An improved GPR optimization method based on the developed feature extraction

被引:27
|
作者
He, Ye [1 ]
Bai, Wenyuan [1 ]
Wang, Lulu [1 ]
Wu, Hongbin [1 ]
Ding, Ming [1 ]
机构
[1] Hefei Univ Technol, Anhui Prov Key Lab Renewable Energy Utilizat & Ene, Hefei 230009, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium -ion battery; SOH estimation; Health indicator; Data -driven method; Coefficient of variation; STATE-OF-HEALTH; IDENTIFICATION METHOD; PREDICTION;
D O I
10.1016/j.est.2024.110678
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate estimation of the State of Health (SOH) for lithium-ion batteries is necessary for the stable operation of the battery system. To accurately estimate the SOH for lithium-ion batteries, we propose an SOH estimation method based on the features of the variation coefficient of partial charging curves, feature processing, and Gaussian Process Regression (GPR). Firstly, the features of the variation coefficient are extracted from the partial charging voltage and current curves as health indicators. The extracted features are efficient and practical, and can effectively reflect the aging phenomenon of batteries. Subsequently, to suppress existing noises, Box-Cox transform (BCT) and discrete wavelet packet transform (DWPT) are employed for the extracted feature signals, thus improving the correlation between the features and the SOH, and ensuring the reliability of the overall framework. Moreover, aiming at the parameters selection problem of the GPR model, an improved particle swarm optimization algorithm with mutation factor and self-adaptive weight adjustment according to population diversity is introduced. Finally, the proposed SOH estimation framework is verified on the NASA battery data set. The experimental results show that the estimation error of the proposed model can be kept within 1.5 % based on different training sample sizes. The results show that the proposed model has high estimation accuracy, generalization, and adaptability.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] SOH Estimation for Lithium-Ion Batteries Based on Health Indicators Extraction and MKRVR
    Zhang, Mei
    Zhang, Jian
    Le, Lv
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (02)
  • [2] Lithium-Ion Batteries SOH Estimation With Multimodal Multilinear Feature Fusion
    Lin, Mingqiang
    You, Yuqiang
    Meng, Jinhao
    Wang, Wei
    Wu, Ji
    Stroe, Daniel-Ioan
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2023, 38 (04) : 2959 - 2968
  • [3] A SOH estimation method of lithium-ion batteries based on partial charging data
    Gao, Renjing
    Zhang, Yunfei
    Lyu, Zhiqiang
    JOURNAL OF ENERGY STORAGE, 2024, 103
  • [4] SOH estimation of lithium-ion batteries based on multi-feature deep fusion and XGBoost
    Sun, Jing
    Fan, Chaoqun
    Yan, Huiyi
    ENERGY, 2024, 306
  • [5] SOH Estimation Method for Lithium-ion Batteries Based on DTV-IGPR Model
    Wang P.
    Peng X.
    Cheng Z.
    Cheng, Ze (chengze@tju.edu.cn), 1710, SAE-China (43): : 1710 - 1719
  • [6] A unified GPR model based on transfer learning for SOH prediction of lithium-ion batteries
    Cai, Li
    JOURNAL OF PROCESS CONTROL, 2024, 144
  • [7] An Improved Collaborative Estimation Method for Determining The SOC and SOH of Lithium-Ion Power Batteries for Electric Vehicles
    Liu, Yixin
    Lei, Ao
    Yu, Chunyang
    Huang, Tengfei
    Yu, Yuanbin
    ENERGIES, 2024, 17 (13)
  • [8] SOH estimation method for lithium-ion batteries based on an improved equivalent circuit model via electrochemical impedance spectroscopy
    Li, Chaofan
    Yang, Lin
    Li, Qiang
    Zhang, Qisong
    Zhou, Zhengyi
    Meng, Yizhen
    Zhao, Xiaowei
    Wang, Lin
    Zhang, Shumei
    Li, Yang
    Lv, Feng
    JOURNAL OF ENERGY STORAGE, 2024, 86
  • [9] Novel method for modelling and adaptive estimation for SOC and SOH of lithium-ion batteries
    Li, Zuxin
    Shen, Shengyu
    Zhou, Zhe
    Cai, Zhiduan
    Gu, Weimin
    Zhang, Fengying
    JOURNAL OF ENERGY STORAGE, 2023, 62
  • [10] A new SOH estimation method for Lithium-ion batteries based on model-data-fusion
    Chen, Liping
    Xie, Siqiang
    Lopes, Antonio M.
    Li, Huafeng
    Bao, Xinyuan
    Zhang, Chaolong
    Li, Penghua
    ENERGY, 2024, 286