Exact Calabi-Yau categories and odd-dimensional Lagrangian spheres

被引:0
作者
Li, Yin [1 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
基金
英国工程与自然科学研究理事会;
关键词
Calabi-Yau algebra; Fukaya category; Lagrangian submanifold; HOMOLOGICAL MIRROR SYMMETRY; EXACT SEQUENCE; FLOER HOMOLOGY; KOSZUL DUALITY; ALGEBRAS; CONTACT; COHOMOLOGY; TOPOLOGY; TORI;
D O I
10.4171/QT/199
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An exact Calabi-Yau structure, originally introduced by Keller, is a special kind of smooth Calabi-Yau structure in the sense of Kontsevich-Vlassopoulos (2021). For a Weinstein manifold M, the existence of an exact Calabi-Yau structure on the wrapped Fukaya category W(M) imposes strong restrictions on its symplectic topology. Under the cyclic open -closed map constructed by Ganatra (2019), an exact Calabi-Yau structure on W(M) induces a class bQ in the degree one equivariant symplectic cohomology SH1S1(M). Any Weinstein manifold admitting a quasi -dilation in the sense of Seidel-Solomon [Geom. Funct. Anal. 22 (2012), 443-477] has an exact Calabi-Yau structure on W(M). We prove that there are many Weinstein manifolds whose wrapped Fukaya categories are exact Calabi-Yau despite the fact that there is no quasi -dilation in SH1(M); a typical example is given by the affine hypersurface {x3 + y3 + z3 + w3 = 1} c C4. As an application, we prove the homological essentiality of Lagrangian spheres in many odd -dimensional smooth affine varieties with exact Calabi-Yau wrapped Fukaya categories.
引用
收藏
页码:123 / 227
页数:105
相关论文
共 79 条
  • [1] On the Floer homology of cotangent bundles
    Abbondandolo, A
    Schwarz, M
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (02) : 254 - 316
  • [2] LAGRANGIAN FIBRATIONS ON BLOWUPS OF TORIC VARIETIES AND MIRROR SYMMETRY FOR HYPERSURFACES
    Abouzaid, Mohammed
    Auroux, Denis
    Katzarkov, Ludmil
    [J]. PUBLICATIONS MATHEMATIQUES DE L IHES, 2016, 123 (01): : 199 - 282
  • [3] Abouzaid M, 2012, J SYMPLECT GEOM, V10, P27
  • [4] An open string analogue of Viterbo functoriality
    Abouzaid, Mohammed
    Seidel, Paul
    [J]. GEOMETRY & TOPOLOGY, 2010, 14 (02) : 627 - 718
  • [5] A GEOMETRIC CRITERION FOR GENERATING THE FUKAYA CATEGORY
    Abouzaid, Mohammld
    [J]. PUBLICATIONS MATHEMATIQUES DE L IHES, 2010, (112): : 191 - 240
  • [6] Biolley AL, 2004, Arxiv, DOI arXiv:math/0404551
  • [7] S1-Equivariant Symplectic Homology and Linearized Contact Homology
    Bourgeois, Frederic
    Oancea, Alexandru
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (13) : 3849 - 3937
  • [8] THE GYSIN EXACT SEQUENCE FOR S1-EQUIVARIANT SYMPLECTIC HOMOLOGY
    Bourgeois, Frederic
    Oancea, Alexandru
    [J]. JOURNAL OF TOPOLOGY AND ANALYSIS, 2013, 5 (04) : 361 - 407
  • [9] Effect of Legendrian surgery
    Bourgeois, Frederic
    Ekholm, Tobias
    Eliashberg, Yasha
    Ganatra, Sheel
    Maydanskiy, Maksim
    [J]. GEOMETRY & TOPOLOGY, 2012, 16 (01) : 301 - 389
  • [10] An exact sequence for contact- and symplectic homology
    Bourgeois, Frederic
    Oancea, Alexandru
    [J]. INVENTIONES MATHEMATICAE, 2009, 175 (03) : 611 - 680