共 50 条
rGO-Based Memristive Sensor for Rapid Hydrogen Detection at Room Temperature
被引:0
|作者:
Abuhamra, Nada
[1
]
Abunahla, Heba
[2
]
Ali, Ashraf
[3
]
Waheed, Waqas
[4
]
Mahmoud, Saleh T.
[3
]
Alazzam, Anas
[4
]
Mohammad, Baker
[1
]
机构:
[1] Khalifa Univ Sci & Technol, Syst On Chip Ctr, Elect Engn & Comp Sci Dept, Abu Dhabi, U Arab Emirates
[2] Delft Univ Technol, Dept Quantum & Comp Engn, NL-2628 CD Delft, Netherlands
[3] United Arab Emirates Univ, Phys Dept, Abu Dhabi, U Arab Emirates
[4] Khalifa Univ Sci & Technol, Syst On Chip Ctr, Mech Engn Dept, Abu Dhabi, U Arab Emirates
关键词:
Sensors;
Temperature sensors;
Voltage;
Gas detectors;
Hydrogen;
Fabrication;
Plasma temperature;
Gas sensing;
hydrogen sensor;
memristor (MR);
reduced graphene oxide (rGO);
GRAPHENE OXIDE;
GAS SENSORS;
PERFORMANCE;
SYSTEM;
D O I:
10.1109/JSEN.2023.3328869
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
In recent years, there has been a growing interest in investigating the potential of emerging memristor (MR) devices for gas sensing applications, particularly at room temperature. This article reports on a planar Au/reduced graphene oxide (rGO)/Au memristive hydrogen sensor, fabricated on a cost-effective cyclic olefin copolymer (COC) substrate, and utilizing the rGO green carbon material as its active sensing element. The sensor's performance is evaluated using two different testing modes: conventional chemiresistive testing under a constant voltage bias (CVB) and voltage pulse (VP) modes. The CVB mode demonstrates high repeatability, selectivity, response time, and recovery time, indicating the sensor's reliable gas sensing capabilities. In addition, the VP mode significantly enhances the sensor's relative percentage response, indicating its potential for improved gas sensing performance. To optimize the sensor's response, the impact of hydrogen exposure on the MR resistive switching is studied, revealing that the effect is contingent on the VP amplitude. Specifically, gas-enhanced resistive switching is achieved at lower voltage levels, whereas at higher voltage levels, gas exposure slows down the rate of resistive switching. Consequently, voltage-pulse testing is conducted at two voltage magnitudes, low (2.5 V) and high (4.5 V), and the sensor's response is enhanced from 0.5% under CVB mode to 786% under VP mode.
引用
收藏
页码:30093 / 30101
页数:9
相关论文