Selection Bias Requires Selection: The Case of Collider Stratification Bias

被引:9
作者
Lu, Haidong [2 ,3 ,4 ]
Gonsalves, Gregg S. [3 ,4 ,5 ]
Westreich, Daniel [1 ,6 ]
机构
[1] UNC Gillings Sch Global Publ Hlth, Dept Epidemiol, 105C McGavran Greenberg Hall CB 7435, Chapel Hill, NC 27599 USA
[2] Yale Sch Med, Dept Internal Med, Sect Gen Internal Med, New Haven, CT USA
[3] Yale Sch Publ Hlth, Publ Hlth Modeling Unit, New Haven, CT USA
[4] Yale Sch Med, Program Addict Med, New Haven, CT USA
[5] Yale Sch Publ Hlth, Dept Epidemiol Microbial Dis, New Haven, CT USA
[6] UNC Gillings Sch Global Publ Hlth, Dept Epidemiol, Chapel Hill, NC USA
基金
美国国家卫生研究院;
关键词
causal diagrams; collider adjustment bias; collider stratification bias; epidemiologic research; overadjustment bias; selection bias;
D O I
10.1093/aje/kwad213
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
In epidemiology, collider stratification bias, the bias resulting from conditioning on a common effect of two causes, is oftentimes considered a type of selection bias, regardless of the conditioning methods employed. In this commentary, we distinguish between two types of collider stratification bias: collider restriction bias due to restricting to one level of a collider (or a descendant of a collider) and collider adjustment bias through inclusion of a collider (or a descendant of a collider) in a regression model. We argue that categorizing collider adjustment bias as a form of selection bias may lead to semantic confusion, as adjustment for a collider in a regression model does not involve selecting a sample for analysis. Instead, we propose that collider adjustment bias can be better viewed as a type of overadjustment bias. We further provide two distinct causal diagram structures to distinguish collider restriction bias and collider adjustment bias. We hope that such a terminological distinction can facilitate easier and clearer communication.
引用
收藏
页码:407 / 409
页数:3
相关论文
共 11 条
[1]   Illustrating bias due to conditioning on a collider [J].
Cole, Stephen R. ;
Platt, Robert W. ;
Schisterman, Enrique F. ;
Chu, Haitao ;
Westreich, Daniel ;
Richardson, David ;
Poole, Charles .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2010, 39 (02) :417-420
[2]   Quantifying biases in causal models:: Classical confounding vs collider-stratification bias [J].
Greenland, S .
EPIDEMIOLOGY, 2003, 14 (03) :300-306
[3]  
Greenland S., 2022, Probabilistic and Causal Inference: The Works of Judea Pearl, V1, P605
[4]   A structural approach to selection bias [J].
Hernán, MA ;
Hernández-Díaz, S ;
Robins, JM .
EPIDEMIOLOGY, 2004, 15 (05) :615-625
[5]   RESOLVING AN APPARENT PARADOX IN DOUBLY ROBUST ESTIMATORS [J].
Keil, Alexander P. ;
Mooney, Stephen J. ;
Funk, Michele Jonsson ;
Cole, Stephen R. ;
Edwards, Jessie K. ;
Westreich, Daniel .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2018, 187 (04) :891-892
[6]   Toward a Clearer Definition of Selection Bias When Estimating Causal Effects [J].
Lu, Haidong ;
Cole, Stephen R. ;
Howe, Chanelle J. ;
Westreich, Daniel .
EPIDEMIOLOGY, 2022, 33 (05) :699-706
[7]   Revisiting Overadjustment Bias [J].
Lu, Haidong ;
Cole, Stephen R. ;
Platt, Robert W. ;
Schisterman, Enrique F. .
EPIDEMIOLOGY, 2021, 32 (05) :E22-E23
[8]  
Merriam-Webster Dictionary, SEL
[9]  
Porta M., 2014, A Dictionary of Epidemiology
[10]   Overadjustment Bias and Unnecessary Adjustment in Epidemiologic Studies [J].
Schisterman, Enrique F. ;
Cole, Stephen R. ;
Platt, Robert W. .
EPIDEMIOLOGY, 2009, 20 (04) :488-495