Mass transfer in atmospheric water harvesting systems

被引:7
|
作者
Lassitter, Thomas [1 ]
Hanikel, Nikita [2 ,3 ]
Coyle, Dennis J. [4 ]
Hossain, Mohammad I. [1 ]
Lipinski, Bryce [4 ]
O'Brien, Michael [4 ]
Hall, David B. [4 ]
Hastings, Jon [1 ]
Borja, Juan [4 ]
O'Neil, Travis [4 ]
Neumann, S. Ephraim [2 ,3 ]
Moore, David R. [4 ]
Yaghi, Omar M. [2 ,3 ]
Glover, T. Grant [1 ]
机构
[1] Univ S Alabama, Dept Chem & Biomol Engn, Mobile, AL 36688 USA
[2] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA
[4] GE Global Res, 1 Res Circle, Niskayuna, NY 12309 USA
关键词
FREQUENCY-RESPONSE METHOD; METAL-ORGANIC FRAMEWORKS; MOLAR FLOW-RATE; NANOPOROUS ADSORBENTS; MIXTURE DIFFUSION; SELF-DIFFUSION; TRANSFER RATES; ADSORPTION EQUILIBRIUM; TRANSPORT DIFFUSION; TRANSFER MECHANISMS;
D O I
10.1016/j.ces.2023.119430
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this work, the rate-limiting diffusion mechanisms of MOF-303, MOF-333, and a multivariate (MTV) version of these metal-organic frameworks (MOFs), where the organic linkers are present in a 50/50 ratio, are identified and quantified using concentration swing frequency response (CSFR). The data show that the single-atom precision of MOFs allows for precise tuning of the diffusion rate that is not easily achieved in traditional adsorbent materials. The Maxwell-Stefan diffusivity as a function of loading was calculated to decouple the influence of molecular mobility and equilibrium effects. To further understand the diffusion process in these MOFs, samples with different crystal sizes were synthesized and diffusion rates were measured. The results show that the controlling diffusion length scale is similar between the small and large crystal samples, as evidenced by similar diffusion rate constants. The MOFs were then incorporated into a film using a binder system and the mass transfer mechanisms were identified using CSFR. When placed in this particular binder system, the macropore diffusion behavior dominates over the MOF micropore diffusion. To illustrate how these diffusion parameters govern the adsorption rates and dynamics of water-harvesting systems, a model of the MOF-coated tube was developed. The results show that, with only milligrams of adsorbent, CSFR can quantify the diffusion rate needed to predict the adsorption times in a water -harvesting system. More broadly, the results illustrate the connectivity between atomically-precise reticular chemistry and water-harvesting system performance.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Review of sustainable methods for atmospheric water harvesting
    Jarimi, Hasila
    Powell, Richard
    Riffat, Saffa
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2020, 15 (02) : 253 - 276
  • [32] Atmospheric water harvesting: critical metrics and challenges
    Wang, Jiayun
    Hua, Lingji
    Li, Chunfeng
    Wang, Ruzhu
    ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (12) : 4867 - 4871
  • [33] Numerical simulation on circulation flow and mass transfer inside atmospheric water drops
    Wang, Zhentao
    Guo, Tianyu
    Tian, Lin
    Xu, Qian
    Zhan, Shuiqing
    Tu, Jiyuan
    APPLIED THERMAL ENGINEERING, 2017, 118 : 765 - 772
  • [34] Trigeneration of photovoltage, thermovoltage, and water via atmospheric water harvesting
    Li, Haoran
    Zhang, Huixin
    Li, Yinzhen
    Zhang, Wei
    Zhang, Lei
    Niu, Xiaojuan
    Li, Yan
    Hong, Wenpeng
    ENERGY, 2025, 321
  • [35] Progress and perspectives of sorption-based atmospheric water harvesting for sustainable water generation: Materials, devices, and systems
    Bai, Zhaoyuan
    Wang, Pengfei
    Xu, Jiaxing
    Wang, Ruzhu
    Li, Tingxian
    SCIENCE BULLETIN, 2024, 69 (05) : 671 - 687
  • [36] An atmospheric water harvesting system based on the "Optimal Harvesting Window" design for worldwide water production
    Li, Qian
    Shao, Zhao
    Zou, Qihong
    Pan, Quanwen
    Zhao, Yao
    Feng, Yaohui
    Wang, Wenwen
    Wang, Ruzhu
    Ge, Tianshu
    SCIENCE BULLETIN, 2024, 69 (10) : 1437 - 1447
  • [37] Diversifying Water Sources with Atmospheric Water Harvesting to Enhance Water Supply Resilience
    Zhang, Mengbo
    Liu, Ranbin
    Li, Yaxuan
    SUSTAINABILITY, 2022, 14 (13)
  • [38] Tailoring interfaces for atmospheric water harvesting: Fundamentals and applications
    Gao, Shouwei
    Wang, Yang
    Zhang, Chao
    Jiang, Mengnan
    Wang, Steven
    Wang, Zuankai
    MATTER, 2023, 6 (07) : 2182 - 2205
  • [39] A Sulfonated Covalent Organic Framework for Atmospheric Water Harvesting
    Schweng, Paul
    Li, Changxia
    Guggenberger, Patrick
    Kleitz, Freddy
    Woodward, Robert T.
    CHEMSUSCHEM, 2024, 17 (20)
  • [40] Atmospheric water harvesting using functionalized carbon nanocones
    Leivas, Fernanda R.
    Barbosa, Marcia C.
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2023, 14 : 1 - 10