ASYMPTOTIC STABILITY OF SOLITARY WAVES OF THE 3D QUADRATIC ZAKHAROV-KUZNETSOV EQUATION

被引:3
作者
Farah, Luiz Gustavo [1 ]
Holmer, Justin [2 ]
Roudenko, Svetlana [3 ]
Yang, Kai [4 ,5 ]
机构
[1] Univ Fed Minas Gerais UFMG, Dept Math, Belo Horizonte, Brazil
[2] Brown Univ, Dept Math, Providence, RI USA
[3] Florida Int Univ, Dept Math & Statist, Miami, FL USA
[4] Chongqing Univ, Key Lab Nonlinear Anal & Applicat, Minist Educ, Chongqing 401331, Peoples R China
[5] Chongqing Univ, Coll Math & Statist, Chongqing 401331, Peoples R China
关键词
CAUCHY-PROBLEM; SOLITONS;
D O I
10.1353/ajm.2023.a913295
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the quadratic Zakharov-Kuznetsov equation partial differential tu+ partial differential x increment u+ partial differential xu2 = 0 on R3. A solitary wave solution is given by Q(x - t, y, z), where Q is the ground state solution to -Q + increment Q + Q(2) = 0. We prove the asymptotic stability of these solitary wave solutions. Specifically, we show that initial data close to Q in the energy space, evolves to a solution that, as t -> infinity, converges to a rescaling and shift of Q(x - t, y, z) in L2 in a rightward shifting region x > delta t - tan theta y2 + z2 for 0 < theta <pi 3 - delta.
引用
收藏
页码:1695 / 1775
页数:82
相关论文
共 26 条
  • [1] [Anonymous], 2019, Nonlinear Dispersive Waves and Fluids, Contemp. Math., V725, P89
  • [2] [Anonymous], 2019, Fields Inst. Commun., V83, P295
  • [3] Asymptotic Stability of High-dimensional Zakharov-Kuznetsov Solitons
    Cote, Raphael
    Munoz, Claudio
    Pilod, Didier
    Simpson, Gideon
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 220 (02) : 639 - 710
  • [4] Stability and instability of some nonlinear dispersive solitary waves in higher dimension
    deBouard, A
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1996, 126 : 89 - 112
  • [5] On instability of solitons in the 2d cubic Zakharov-Kuznetsov equation
    Farah, Luiz Gustavo
    Holmer, Justin
    Roudenko, Svetlana
    [J]. SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2019, 13 (02): : 435 - 446
  • [6] Instability of solitons-revisited, I: The critical generalized KdV equation
    Farah, Luiz Gustavo
    Holmer, Justin
    Roudenko, Svetlana
    [J]. NONLINEAR DISPERSIVE WAVES AND FLUIDS, 2019, 725 : 65 - 88
  • [7] Fibich G., 2015, The nonlinear Schrodinger equation, DOI [10.1007/978-3-319-12748-4, DOI 10.1007/978-3-319-12748-4]
  • [8] STABILITY THEORY OF SOLITARY WAVES IN THE PRESENCE OF SYMMETRY .1.
    GRILLAKIS, M
    SHATAH, J
    STRAUSS, W
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 74 (01) : 160 - 197
  • [9] Farah LG, 2018, Arxiv, DOI arXiv:1810.05121
  • [10] Shinya Subcritical well-posedness results for the Zakharov-Kuznetsov equation in dimension three and higher
    Herr, Sebastian
    Kinoshita, Shinya
    [J]. ANNALES DE L INSTITUT FOURIER, 2023, 73 (03) : 1203 - 1267