ASYMPTOTIC STABILITY OF SOLITARY WAVES OF THE 3D QUADRATIC ZAKHAROV-KUZNETSOV EQUATION

被引:3
作者
Farah, Luiz Gustavo [1 ]
Holmer, Justin [2 ]
Roudenko, Svetlana [3 ]
Yang, Kai [4 ,5 ]
机构
[1] Univ Fed Minas Gerais UFMG, Dept Math, Belo Horizonte, Brazil
[2] Brown Univ, Dept Math, Providence, RI USA
[3] Florida Int Univ, Dept Math & Statist, Miami, FL USA
[4] Chongqing Univ, Key Lab Nonlinear Anal & Applicat, Minist Educ, Chongqing 401331, Peoples R China
[5] Chongqing Univ, Coll Math & Statist, Chongqing 401331, Peoples R China
关键词
CAUCHY-PROBLEM; SOLITONS;
D O I
10.1353/ajm.2023.a913295
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the quadratic Zakharov-Kuznetsov equation partial differential tu+ partial differential x increment u+ partial differential xu2 = 0 on R3. A solitary wave solution is given by Q(x - t, y, z), where Q is the ground state solution to -Q + increment Q + Q(2) = 0. We prove the asymptotic stability of these solitary wave solutions. Specifically, we show that initial data close to Q in the energy space, evolves to a solution that, as t -> infinity, converges to a rescaling and shift of Q(x - t, y, z) in L2 in a rightward shifting region x > delta t - tan theta y2 + z2 for 0 < theta <pi 3 - delta.
引用
收藏
页码:1695 / 1775
页数:82
相关论文
共 26 条
[1]  
[Anonymous], 2019, Nonlinear Dispersive Waves and Fluids, Contemp. Math., V725, P89
[2]  
[Anonymous], 2019, Fields Inst. Commun., V83, P295
[3]   Asymptotic Stability of High-dimensional Zakharov-Kuznetsov Solitons [J].
Cote, Raphael ;
Munoz, Claudio ;
Pilod, Didier ;
Simpson, Gideon .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 220 (02) :639-710
[4]   Stability and instability of some nonlinear dispersive solitary waves in higher dimension [J].
deBouard, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1996, 126 :89-112
[5]   On instability of solitons in the 2d cubic Zakharov-Kuznetsov equation [J].
Farah, Luiz Gustavo ;
Holmer, Justin ;
Roudenko, Svetlana .
SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2019, 13 (02) :435-446
[6]   Instability of solitons-revisited, I: The critical generalized KdV equation [J].
Farah, Luiz Gustavo ;
Holmer, Justin ;
Roudenko, Svetlana .
NONLINEAR DISPERSIVE WAVES AND FLUIDS, 2019, 725 :65-88
[7]  
Fibich G., 2015, The Nonlinear Schrodinger Equation. Singular Solutions and Optical Collapse, DOI DOI 10.1007/978-3-319-12748-4
[8]   STABILITY THEORY OF SOLITARY WAVES IN THE PRESENCE OF SYMMETRY .1. [J].
GRILLAKIS, M ;
SHATAH, J ;
STRAUSS, W .
JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 74 (01) :160-197
[9]  
Farah LG, 2018, Arxiv, DOI arXiv:1810.05121
[10]   Shinya Subcritical well-posedness results for the Zakharov-Kuznetsov equation in dimension three and higher [J].
Herr, Sebastian ;
Kinoshita, Shinya .
ANNALES DE L INSTITUT FOURIER, 2023, 73 (03) :1203-1267