Electrochemical Wastewater Refining: A Vision for Circular Chemical Manufacturing

被引:35
作者
Miller, Dean M. [1 ]
Abels, Kristen [1 ]
Guo, Jinyu [1 ]
Williams, Kindle S. [1 ]
Liu, Matthew J. [1 ]
Tarpeh, William A. [1 ,2 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
ELECTROCATALYTIC NITRATE REDUCTION; SUSTAINABLE DEVELOPMENT GOALS; RESOURCE RECOVERY; STRUVITE PRECIPITATION; REFINERY UNITS; NITROGEN; CHEMISTRY; PHOSPHORUS; FUTURE; CHALLENGES;
D O I
10.1021/jacs.3c01142
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Wastewater is an underleveraged resource; it contains pollutants that can be transformed into valuable high-purity products. Innovations in chemistry and chemical engineering will play critical roles in valorizing wastewater to remediate environmental pollution, provide equitable access to chemical resources and services, and secure critical materials from diminishing feedstock availability. This perspective envisions electrochemical wastewater refining-the use of electrochemical processes to tune and recover specific products from wastewaters-as the necessary framework to accelerate wastewater-based electrochemistry to widespread practice. We define and prescribe a use-informed approach that simultaneously serves specific wastewater-pollutant-product triads and uncovers a mechanistic understanding generalizable to broad use cases. We use this approach to evaluate research needs in specific case studies of electrocatalysis, stoichiometric electrochemical conversions, and electrochemical separations. Finally, we provide rationale and guidance for intentionally expanding the electrochemical wastewater refining product portfolio. Wastewater refining will require a coordinated effort from multiple expertise areas to meet the urgent need of extracting maximal value from complex, variable, diverse, and abundant wastewater resources.
引用
收藏
页码:19422 / 19439
页数:18
相关论文
共 172 条
[1]   Electrocatalysis Goes Nuts [J].
Akbashev, Andrew R. .
ACS CATALYSIS, 2022, 12 (08) :4296-4301
[2]  
Alfke G., 2007, Ullmanns Encyclopedia of Industrial Chemistry, DOI [DOI 10.1002/14356007.A18_051.PUB2, 10.1002/14356007.a18_051.pub2]
[3]   Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion [J].
Alkhadra, Mohammad A. ;
Su, Xiao ;
Suss, Matthew E. ;
Tian, Huanhuan ;
Guyes, Eric N. ;
Shocron, Amit N. ;
Conforti, Kameron M. ;
de Souza, J. Pedro ;
Kim, Nayeong ;
Tedesco, Michele ;
Khoiruddin, Khoiruddin ;
Wenten, I. Gede ;
Santiago, Juan G. ;
Hatton, T. Alan ;
Bazant, Martin Z. .
CHEMICAL REVIEWS, 2022, 122 (16) :13547-13635
[4]   Ammonia electrocatalytic synthesis from nitrate [J].
Anastasiadou, Dimitra ;
van Beek, Yvette ;
Hensen, Emiel J. M. ;
Figueiredo, Marta Costa .
ELECTROCHEMICAL SCIENCE ADVANCES, 2023, 3 (05)
[5]  
[Anonymous], 2006, SULFUR
[6]  
[Anonymous], 2000, Ullmann's Encyclopedia of Industrial Chemistry, V3, Wiley-VHC
[7]  
[Anonymous], 2021, CRITICALMATERIALS FA
[8]   Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges [J].
Antonio Melero, Juan ;
Iglesias, Jose ;
Garcia, Alicia .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (06) :7393-7420
[9]   Electroactivated alkylation of amines with alcohols via both direct and indirect borrowing hydrogen mechanisms [J].
Appiagyei, Benjamin ;
Bhatia, Souful ;
Keeney, Gabriela L. ;
Dolmetsch, Troy ;
Jackson, James E. .
GREEN CHEMISTRY, 2020, 22 (03) :860-869
[10]   Overcoming barriers for nitrate electrochemical reduction: By-passing water hardness [J].
Atrashkevich, Aksana ;
Fajardo, Ana S. ;
Westerhoff, Paul ;
Walker, W. Shane ;
Sanchez-Sanchez, Carlos M. ;
Garcia-Segura, Sergi .
WATER RESEARCH, 2022, 225