CotepRes-Net: An efficient U-Net based deep learning method of liver segmentation from Computed Tomography images

被引:7
作者
Zhu, Jiahua [1 ]
Liu, Ziteng [2 ]
Gao, Wenpeng [1 ,2 ,3 ]
Fu, Yili [1 ,2 ,3 ]
机构
[1] Harbin Inst Technol, State Key Lab Robot & Syst, 2 Yikuang Str, Harbin 150080, Peoples R China
[2] Harbin Inst Technol, Sch Life Sci & Technol, 2 Yikuang Str, Harbin 150080, Peoples R China
[3] 2E Bldg,Sci Pk HIT,2 Yikuang Str, Harbin 150080, Peoples R China
关键词
Liver segmentation; Deep learning; Multi-scale features; Computer-aided detection (CAD) system; Computed tomography (CT) images; TUMOR SEGMENTATION; NETWORK;
D O I
10.1016/j.bspc.2023.105660
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Automatic liver segmentation from CT images is challenging due to the indistinct boundaries between the liver and surrounding organs in the abdominal cavity CT. To address these limitations, we propose a deep learning model called CotepRes-Net, which is based on the U-Net architecture but with modified skip connection using a convolutional block attention module (CBAM). We introduce a modified inception block and a contextual transformer block (CoT) at the bottleneck to capture richer feature representations and leverage global contextual information to constrain the liver shape at the unclear boundary. To accelerate the network convergence in the training stage, we utilize an Efficient channel attention module (ECA) in the decoder layers and replace the convolution operation in each convolution layer with a residual structure. We evaluate the performance of the proposed model using the publicly available dataset LiTS (MICCAI 2017 Liver Tumor Segmentation Challenge) and show the segmentation results on the dataset Sliver07 (Segmentation of the Liver Competition 2007). The results show that our model achieves a dice similarity coefficient (DSC) of 0.9688, Jaccard index of 0.9422, volumetric overlap error (VOE) of 0.0578, relative absolute volume difference (RAVD) of 0.0039, average symmetric surface distance (ASSD) of 1.094 mm and maximum symmetric surface distance (MSSD) of 16.079 mm for liver segmentation. The experimental results show that the proposed method is comparable to or even outperform the state-of-the-art methods in terms of accuracy and computation cost, which can serve as a valuable tool for image-based liver analysis.
引用
收藏
页数:13
相关论文
共 70 条
[1]   Automatic Liver Tumor Segmentation based on Multi-level Deep Convolutional Networks and Fractal Residual Network [J].
Anil, B. C. ;
Dayananda, P. .
IETE JOURNAL OF RESEARCH, 2023, 69 (04) :1925-1933
[2]   Neutrosophic Sets and Fuzzy C-Means Clustering for Improving CT Liver Image Segmentation [J].
Anter, Ahmed M. ;
Hassanien, Aboul Ella ;
Abu ElSoud, Mohamed A. ;
Tolba, Mohamed F. .
PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON INNOVATIONS IN BIO-INSPIRED COMPUTING AND APPLICATIONS (IBICA 2014), 2014, 303 :193-203
[3]   The Liver Tumor Segmentation Benchmark (LiTS) [J].
Bilic, Patrick ;
Christ, Patrick ;
Li, Hongwei Bran ;
Vorontsov, Eugene ;
Ben-Cohen, Avi ;
Kaissis, Georgios ;
Szeskin, Adi ;
Jacobs, Colin ;
Mamani, Gabriel Efrain Humpire ;
Chartrand, Gabriel ;
Lohoefer, Fabian ;
Holch, Julian Walter ;
Sommer, Wieland ;
Hofmann, Felix ;
Hostettler, Alexandre ;
Lev-Cohain, Naama ;
Drozdzal, Michal ;
Amitai, Michal Marianne ;
Vivanti, Refael ;
Sosna, Jacob ;
Ezhov, Ivan ;
Sekuboyina, Anjany ;
Navarro, Fernando ;
Kofler, Florian ;
Paetzold, Johannes C. ;
Shit, Suprosanna ;
Hu, Xiaobin ;
Lipkova, Jana ;
Rempfler, Markus ;
Piraud, Marie ;
Kirschke, Jan ;
Wiestler, Benedikt ;
Zhang, Zhiheng ;
Huelsemeyer, Christian ;
Beetz, Marcel ;
Ettlinger, Florian ;
Antonelli, Michela ;
Bae, Woong ;
Bellver, Miriam ;
Bi, Lei ;
Chen, Hao ;
Chlebus, Grzegorz ;
Dam, Erik B. ;
Dou, Qi ;
Fu, Chi-Wing ;
Georgescu, Bogdan ;
Giro-I-Nieto, Xavier ;
Gruen, Felix ;
Han, Xu ;
Heng, Pheng-Ann .
MEDICAL IMAGE ANALYSIS, 2023, 84
[4]   A Lightweight Deep Learning Approach for Liver Segmentation [J].
Bogoi, Smaranda ;
Udrea, Andreea .
MATHEMATICS, 2023, 11 (01)
[5]  
Cao Hu, 2023, Computer Vision - ECCV 2022 Workshops: Proceedings. Lecture Notes in Computer Science (13803), P205, DOI 10.1007/978-3-031-25066-8_9
[6]  
Kaluva KC, 2018, Arxiv, DOI [arXiv:1802.02182, DOI 10.48550/ARXIV.1802.02182]
[7]   Current applications and future directions of deep learning in musculoskeletal radiology [J].
Chea, Pauley ;
Mandell, Jacob C. .
SKELETAL RADIOLOGY, 2020, 49 (02) :183-197
[8]   Liver tumor segmentation in CT volumes using an adversarial densely connected network [J].
Chen, Lei ;
Song, Hong ;
Wang, Chi ;
Cui, Yutao ;
Yang, Jian ;
Hu, Xiaohua ;
Zhang, Le .
BMC BIOINFORMATICS, 2019, 20 (Suppl 16)
[9]  
Chlebus G., 2018, Deep learning based automatic liver tumor segmentation in CT with shape-based post-processing
[10]  
Christ Patrick Ferdinand, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P415, DOI 10.1007/978-3-319-46723-8_48