DIAGNOSIS OF CLINICAL SIGNIFICANT PROSTATE CANCER ON BIPARAMETRIC MRI USING ZONE-SPECIFIC RADIOMIC FEATURES

被引:0
|
作者
Mylona, Eugenia [1 ]
Zaridis, Dimitrios [1 ]
Tachos, Nikolaos [1 ]
Tsiknakis, Manolis [2 ]
Marias, Kostas [2 ]
Fotiadis, Dimitrios I. [1 ,3 ]
机构
[1] FORTH BRI, Dept Biomed Res, Ioannina, Greece
[2] FORTH ICS, Computat Biomed Lab, Iraklion, Greece
[3] Univ Ioannina, Unit Med Technol & Intelligent Informat Syst, Ioannina, Greece
来源
2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI | 2023年
关键词
radiomics; machine learning; prostate cancer characterization; medical imaging; classification; BIOPSY; PATHOLOGY;
D O I
10.1109/ISBI53787.2023.10230613
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantitative assessment of MRI, by means of radiomic analyses, is an emerging approach for prostate cancer (PCa) detection and characterization. Typically, radiomic features are extracted from the lesions, despite inherent uncertainties surrounding PCa segmentation. The aim of the study was to assess the usefulness of mpMRI-based radiomic models, originating from distinct anatomical regions of the prostate for non-invasive characterization of clinically significant PCa and compare them with lesion-derived radiomic models. Different classification tasks were formulated for each anatomical region (whole gland, peripheral zone, transition zone) and the corresponding lesions. For each task, four sets of radiomic features were considered (T2w, DWI, ADC, and their combination), and four classification algorithms (LASSO, RF, SVM, XGB) were implemented. Nested cross-validation was applied for model development, feature selection, hyperparameter optimization, and performance assessment. Whole-region RF radiomic models, with a maximum AUC of 0.84, outperformed the corresponding tumor-specific radiomic models (maximum AUC=0.75).
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Comparison of machine learning algorithms to predict clinically significant prostate cancer of the peripheral zone with multiparametric MRI using clinical assessment categories and radiomic features
    Bernatz, Simon
    Ackermann, Joerg
    Mandel, Philipp
    Kaltenbach, Benjamin
    Zhdanovich, Yauheniya
    Harter, Patrick N.
    Doering, Claudia
    Hammerstingl, Renate
    Bodelle, Boris
    Smith, Kevin
    Bucher, Andreas
    Albrecht, Moritz
    Rosbach, Nicolas
    Basten, Lajos
    Yel, Ibrahim
    Wenzel, Mike
    Bankov, Katrin
    Koch, Ina
    Chun, Felix K-H
    Koellermann, Jens
    Wild, Peter J.
    Vogl, Thomas J.
    EUROPEAN RADIOLOGY, 2020, 30 (12) : 6757 - 6769
  • [2] Radiomics prediction model for the improved diagnosis o clinically significant prostate cancer on biparametric MRI
    Li, Mengjuan
    Chen, Tong
    Zhao, Wenlu
    Wei, Chaogang
    Li, Xiaobo
    Duan, Shaofeng
    Ji, Libiao
    Lu, Zhihua
    Shen, Junkang
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2020, 10 (02) : 368 - +
  • [3] Comparison of machine learning algorithms to predict clinically significant prostate cancer of the peripheral zone with multiparametric MRI using clinical assessment categories and radiomic features
    Simon Bernatz
    Jörg Ackermann
    Philipp Mandel
    Benjamin Kaltenbach
    Yauheniya Zhdanovich
    Patrick N. Harter
    Claudia Döring
    Renate Hammerstingl
    Boris Bodelle
    Kevin Smith
    Andreas Bucher
    Moritz Albrecht
    Nicolas Rosbach
    Lajos Basten
    Ibrahim Yel
    Mike Wenzel
    Katrin Bankov
    Ina Koch
    Felix K.-H. Chun
    Jens Köllermann
    Peter J. Wild
    Thomas J. Vogl
    European Radiology, 2020, 30 : 6757 - 6769
  • [4] Biparametric prostate MRI and clinical indicators predict clinically significant prostate cancer in men with "gray zone" PSA levels
    Wei, Chao-gang
    Chen, Tong
    Zhang, Yue-yue
    Pan, Peng
    Dai, Guang-cheng
    Yu, Hong-chang
    Yang, Shuo
    Jiang, Zhen
    Tu, Jian
    Lu, Zhi-hua
    Shen, Jun-kang
    Zhao, Wen-lu
    EUROPEAN JOURNAL OF RADIOLOGY, 2020, 127
  • [5] Clinically significant prostate cancer detection on MRI: A radiomic shape features study
    Cuocolo, Renato
    Stanzione, Arnaldo
    Ponsiglione, Andrea
    Romeo, Valeria
    Verde, Francesco
    Creta, Massimiliano
    La Rocca, Roberto
    Longo, Nicola
    Pace, Leonardo
    Imbriaco, Massimo
    EUROPEAN JOURNAL OF RADIOLOGY, 2019, 116 : 144 - 149
  • [6] Prediction of Prostate Cancer Grades Using Radiomic Features
    Yamamoto, Yasuhiro
    Haraguchi, Takafumi
    Matsuda, Kaori
    Okazaki, Yoshio
    Kimoto, Shin
    Tanji, Nozomu
    Matsumoto, Atsushi
    Kobayashi, Yasuyuki
    Mimura, Hidefumi
    Hiraki, Takao
    ACTA MEDICA OKAYAMA, 2025, 79 (01) : 21 - 30
  • [7] Current Status of Biparametric MRI in Prostate Cancer Diagnosis: Literature Analysis
    Belue, Mason James
    Yilmaz, Enis Cagatay
    Daryanani, Asha
    Turkbey, Baris
    LIFE-BASEL, 2022, 12 (06):
  • [8] Utility of Clinical-Radiomic Model to Identify Clinically Significant Prostate Cancer in Biparametric MRI PI-RADS V2.1 Category 3 Lesions
    Jin, Pengfei
    Yang, Liqin
    Qiao, Xiaomeng
    Hu, Chunhong
    Hu, Chenhan
    Wang, Ximing
    Bao, Jie
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [9] Combined Analysis of Biparametric MRI and Prostate-Specific Antigen Density: Role in the Prebiopsy Diagnosis of Gleason Score 7 or Greater Prostate Cancer
    Lee, Suji
    Oh, Young Taik
    Jung, Dae Chul
    Cho, Nam Hoon
    Choi, Young Deuk
    Park, Sung Yoon
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2018, 211 (03) : W166 - W172
  • [10] Values of multiparametric and biparametric MRI in diagnosing clinically significant prostate cancer: a multivariate analysis
    Feng, Xiao
    Chen, Xin
    Peng, Peng
    Zhou, He
    Hong, Yi
    Zhu, Chunxia
    Lu, Libing
    Xie, Siyu
    Zhang, Sijun
    Long, Liling
    BMC UROLOGY, 2024, 24 (01)