The role of the lateral orbitofrontal cortex in creating cognitive maps

被引:28
作者
Costa, Kaue Machado [1 ]
Scholz, Robert [2 ,3 ]
Lloyd, Kevin [2 ]
Moreno-Castilla, Perla [4 ]
Gardner, Matthew P. H. [5 ]
Dayan, Peter [2 ,6 ]
Schoenbaum, Geoffrey [1 ]
机构
[1] NIDA, Intramural Res Program, NIH, Baltimore, MD 10016 USA
[2] Max Planck Inst Biol Cybernet, Tubingen, Germany
[3] Max Planck Sch Cognit, Leipzig, Germany
[4] NIA, Intramural Res Program, NIH, Baltimore, MD USA
[5] Concordia Univ, Montreal, PQ, Canada
[6] Univ Tubingen, Tubingen, Germany
基金
美国国家卫生研究院;
关键词
PREFRONTAL CORTEX; STIMULATION; LESIONS; BRAIN; MODEL; INACTIVATION; DEVALUATION; INVOLVEMENT; ACTIVATION; MECHANISMS;
D O I
10.1038/s41593-022-01216-0
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We use mental models of the world-cognitive maps-to guide behavior. The lateral orbitofrontal cortex (lOFC) is typically thought to support behavior by deploying these maps to simulate outcomes, but recent evidence suggests that it may instead support behavior by underlying map creation. We tested between these two alternatives using outcome-specific devaluation and a high-potency chemogenetic approach. Selectively inactivating lOFC principal neurons when male rats learned distinct cue-outcome associations, but before outcome devaluation, disrupted subsequent inference, confirming a role for the lOFC in creating new maps. However, lOFC inactivation surprisingly led to generalized devaluation, a result that is inconsistent with a complete mapping failure. Using a reinforcement learning framework, we show that this effect is best explained by a circumscribed deficit in credit assignment precision during map construction, suggesting that the lOFC has a selective role in defining the specificity of associations that comprise cognitive maps.
引用
收藏
页码:107 / +
页数:17
相关论文
共 59 条
[41]   A neuro-computational model of economic decisions [J].
Rustichini, Aldo ;
Padoa-Schioppa, Camillo .
JOURNAL OF NEUROPHYSIOLOGY, 2015, 114 (03) :1382-1398
[42]   Orbitofrontal lesions in rats impair reversal but not acquisition of go, no-go odor discriminations [J].
Schoenbaum, G ;
Nugent, SL ;
Saddoris, MP ;
Setlow, B .
NEUROREPORT, 2002, 13 (06) :885-890
[43]   Thinking Outside the Box: Orbitofrontal Cortex, Imagination, and How We Can Treat Addiction [J].
Schoenbaum, Geoffrey ;
Chang, Chun-Yun ;
Lucantonio, Federica ;
Takahashi, Yuji K. .
NEUROPSYCHOPHARMACOLOGY, 2016, 41 (13) :2966-2976
[44]   Human Orbitofrontal Cortex Represents a Cognitive Map of State Space [J].
Schuck, Nicolas W. ;
Cai, Ming Bo ;
Wilson, Robert C. ;
Niv, Yael .
NEURON, 2016, 91 (06) :1402-1412
[45]   Disrupted state transition learning as a computational marker of compulsivity [J].
Sharp, Paul B. ;
Dolan, Raymond J. ;
Eldar, Eran .
PSYCHOLOGICAL MEDICINE, 2023, 53 (05) :2095-2105
[46]   A bidirectional corticoamygdala circuit for the encoding and retrieval of detailed reward memories [J].
Sias, Ana C. ;
Morse, Ashleigh K. ;
Wang, Sherry ;
Greenfield, Venuz Y. ;
Goodpaster, Caitlin M. ;
Wrenn, Tyler M. ;
Wikenheiser, Andrew M. ;
Holley, Sandra M. ;
Cepeda, Carlos ;
Levine, Michael S. ;
Wassum, Kate M. .
ELIFE, 2021, 10
[47]   The Orbitofrontal Cortex and Ventral Tegmental Area Are Necessary for Learning from Unexpected Outcomes [J].
Takahashi, Yuji K. ;
Roesch, Matthew R. ;
Stainaker, Thomas A. ;
Haney, Richard Z. ;
Caiu, Donna J. ;
Taylor, Adam R. ;
Burke, Kathryn A. ;
Schoenbaum, Geoffrey .
NEURON, 2009, 62 (02) :269-280
[48]   Transitive inference in schizophrenia: impairments in relational memory organization [J].
Titone, D ;
Ditman, T ;
Holzman, PS ;
Eichenbaum, H ;
Levy, DL .
SCHIZOPHRENIA RESEARCH, 2004, 68 (2-3) :235-247
[49]   Orbitofrontal cortex pathology in Alzheimer's disease [J].
Van Hoesen, GW ;
Parvizi, J ;
Chu, CC .
CEREBRAL CORTEX, 2000, 10 (03) :243-251
[50]   Addiction, a disease of compulsion and drive: Involvement of the orbitofrontal cortex [J].
Volkow, ND ;
Fowler, JS .
CEREBRAL CORTEX, 2000, 10 (03) :318-325