Data-Driven Modeling Approach for the Virtual Conversion of a Hybridized Passenger Car

被引:1
作者
Hagenbucher, Timo [1 ]
Milojevic, Sasa [2 ]
Grill, Michael [1 ]
Kulzer, Andre Casal [3 ]
机构
[1] FKFS, Simulat & Artif Intelligence, Stuttgart, Germany
[2] IFS Univ Stuttgart, Simulat & Artif Intelligence, Stuttgart, Germany
[3] IFS Univ Stuttgart, Automot Powertrain Syst, Stuttgart, Germany
来源
2023 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI | 2023年
关键词
Data-Driven; Digital Twin; LSTM; OBD; HIL;
D O I
10.1109/CAI54212.2023.00022
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Physics-based modeling is an important and cost-efficient tool within the design process in vehicular technology. Creating and validating predictive 0D/1D models is a time-consuming process that requires extensive domain knowledge and specific experimental data for each sub-system to be modeled. To handle increasing complexity and variant diversity in the design process of hybrid vehicles, a data-driven modeling approach based on real driving data is introduced. A digital twin is derived using a power-split Ford Galaxy FHEV as an exemplary use case to validate the methodology. The digital twin is divided into four individually trained Long Short-Term Memory (LSTM) networks. Training data is acquired using a ROSI Dongle OBD data logger.
引用
收藏
页码:32 / 35
页数:4
相关论文
共 50 条
  • [41] A Novel Hybrid Data-Driven Modeling Method for Missiles
    He, Yongxiang
    Guo, Hongwu
    Han, Yang
    SYMMETRY-BASEL, 2020, 12 (01):
  • [42] Data-Driven Hair Modeling From a Single Image
    Wu, Jiqiang
    Bao, Yongtang
    Qi, Yue
    2018 8TH INTERNATIONAL CONFERENCE ON VIRTUAL REALITY AND VISUALIZATION (ICVRV), 2018, : 8 - 14
  • [43] A data-driven modeling approach to quantify morphology effects on transport properties in nanostructured NMC particles
    Neumann, Matthias
    Wetterauer, Sven E.
    Osenberg, Markus
    Hilger, Andre
    Graefensteiner, Phillip
    Wagner, Amalia
    Bohn, Nicole
    Binder, Joachim R.
    Manke, Ingo
    Carraro, Thomas
    Schmidt, Volker
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2023, 280
  • [44] Modeling for assembly simulations: Data description and a data-driven construction framework
    Qiao L.
    Qie Y.
    Zhu Y.
    International Journal of Modeling, Simulation, and Scientific Computing, 2017, 8 (02)
  • [45] A data-driven approach for modeling tension–compression asymmetric material behavior: numerical simulation and experiment
    Hai Qiu
    Hang Yang
    Khalil l. Elkhodary
    Shan Tang
    Xu Guo
    Jinhao Huang
    Computational Mechanics, 2022, 69 : 299 - 313
  • [46] Assembly quality evaluation for linear axis of machine tool using data-driven modeling approach
    Hui, Yang
    Mei, Xuesong
    Jiang, Gedong
    Zhao, Fei
    Ma, Ziwei
    Tao, Tao
    JOURNAL OF INTELLIGENT MANUFACTURING, 2022, 33 (03) : 753 - 769
  • [47] Assembly quality evaluation for linear axis of machine tool using data-driven modeling approach
    Yang Hui
    Xuesong Mei
    Gedong Jiang
    Fei Zhao
    Ziwei Ma
    Tao Tao
    Journal of Intelligent Manufacturing, 2022, 33 : 753 - 769
  • [48] The data-driven approach for prediction of yield function of composites
    Lvov, Gennadiy
    Chetverikova, Anastasiya
    Vodka, Oleksii
    2020 IEEE KHPI WEEK ON ADVANCED TECHNOLOGY (KHPI WEEK), 2020, : 144 - 147
  • [49] A Data-driven Motion Control Approach for a Robotic Fish
    Ren, Qinyuan
    Xu, Jianxin
    Li, Xuefang
    JOURNAL OF BIONIC ENGINEERING, 2015, 12 (03) : 382 - 394
  • [50] Data-Driven Power Flow Linearization: A Regression Approach
    Liu, Yuxiao
    Zhang, Ning
    Wang, Yi
    Yang, Jingwei
    Kang, Chongqing
    IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (03) : 2569 - 2580