Automated Road Damage Detection Using UAV Images and Deep Learning Techniques

被引:31
作者
Silva, Luis Augusto [1 ]
Leithardt, Valderi Reis Quietinho [2 ,3 ]
Batista, Vivian Felix Lopez [4 ]
Gonzalez, Gabriel Villarrubia [1 ]
Santana, Juan Francisco De Paz [1 ]
机构
[1] Univ Salamanca, Fac Sci, Expert Syst & Applicat Lab ESALAB, Salamanca 37008, Spain
[2] Polytech Inst Portalegre, VALORIZA, P-7300555 Portalegre, Portugal
[3] Inst Politecn Lisboa, Inst Super Engn Lisboa, P-1959007 Lisbon, Portugal
[4] Univ Salamanca, Dept Comp Sci & Automat, Salamanca 37008, Spain
关键词
UAV; road damage detection; deep learning; object-detection; CLASSIFICATION;
D O I
10.1109/ACCESS.2023.3287770
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel automated road damage detection approach using Unmanned Aerial Vehicle (UAV) images and deep learning techniques. Maintaining road infrastructure is critical for ensuring a safe and sustainable transportation system. However, the manual collection of road damage data can be labor-intensive and unsafe for humans. Therefore, we propose using UAVs and Artificial Intelligence (AI) technologies to improve road damage detection's efficiency and accuracy significantly. Our proposed approach utilizes three algorithms, YOLOv4, YOLOv5, and YOLOv7, for object detection and localization in UAV images. We trained and tested these algorithms using a combination of the RDD2022 dataset from China and a Spanish road dataset. The experimental results demonstrate that our approach is efficient and achieves 59.9% mean average precision mAP@.5 for the YOLOv5 version, 65.70% mAP@.5 for a YOLOv5 model with a Transformer Prediction Head, and 73.20% mAP@.5 for the YOLOv7 version. These results demonstrate the potential of using UAVs and deep learning for automated road damage detection and pave the way for future research in this field.
引用
收藏
页码:62918 / 62931
页数:14
相关论文
共 43 条
[1]  
Abdellatif M., 2020, REMOTE SENS-BASEL, V12, P1
[2]   Attention-based generative adversarial network with internal damage segmentation using thermography [J].
Ali, Rahmat ;
Cha, Young-Jin .
AUTOMATION IN CONSTRUCTION, 2022, 141
[3]   Real-time multiple damage mapping using autonomous UAV and deep faster region-based neural networks for GPS-denied structures [J].
Ali, Rahmat ;
Kang, Dongho ;
Suh, Gahyun ;
Cha, Young-Jin .
AUTOMATION IN CONSTRUCTION, 2021, 130
[4]   Convolutional neural networks based potholes detection using thermal imaging [J].
Aparna, Yukti ;
Bhatia, Yukti ;
Rai, Rachna ;
Gupta, Varun ;
Aggarwal, Naveen ;
Akula, Aparna .
JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (03) :578-588
[5]  
Arya D., 2022, arXiv
[6]  
Arya D, 2022, Arxiv, DOI [arXiv:2209.08538, DOI 10.48550/ARXIV.2209.08538]
[7]   Global Road Damage Detection: State-of-the-art Solutions [J].
Arya, Deeksha ;
Maeda, Hiroya ;
Ghosh, Sanjay Kumar ;
Toshniwal, Durga ;
Omata, Hiroshi ;
Kashiyama, Takehiro ;
Sekimoto, Yoshihide .
2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, :5533-5539
[8]   Active Actions in the Extraction of Urban Objects for Information Quality and Knowledge Recommendation with Machine Learning [J].
Augusto Silva, Luis ;
Sales Mendes, Andre ;
Sanchez San Blas, Hector ;
Bastos, Lia Caetano ;
Goncalves, Alexandre Leopoldo ;
de Moraes, Andre Fabiano .
SENSORS, 2023, 23 (01)
[9]  
Blas H. S. S., 2023, INT J INTERACT MULTI, P1
[10]  
Bochkovskiy A, 2020, Arxiv, DOI arXiv:2004.10934