Bayesian composite quantile regression for the single-index model

被引:3
作者
Yuan, Xiaohui [1 ]
Xiang, Xuefei [2 ]
Zhang, Xinran [2 ]
机构
[1] Jilin Univ, Sch Math, Changchun, Peoples R China
[2] Changchun Univ Technol, Sch Math & Stat, Changchun, Peoples R China
关键词
VARIABLE SELECTION; SEMIPARAMETRIC ESTIMATION;
D O I
10.1371/journal.pone.0285277
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
By using a Gaussian process prior and a location-scale mixture representation of the asymmetric Laplace distribution, we develop a Bayesian analysis for the composite quantile single-index regression model. The posterior distributions for the unknown parameters are derived, and the Markov chain Monte Carlo sampling algorithms are also given. The proposed method is illustrated by three simulation examples and a real dataset.
引用
收藏
页数:17
相关论文
共 32 条
[1]  
Antoniadis A, 2004, STAT SINICA, V14, P1147
[2]   Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics [J].
Barndorff-Nielsen, OE ;
Shephard, N .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2001, 63 :167-207
[3]   Estimation in Single-Index Panel Data Models with Heterogeneous Link Functions [J].
Chen, Jia ;
Gao, Jiti ;
Li, Degui .
ECONOMETRIC REVIEWS, 2013, 32 (08) :928-955
[4]   A Gaussian process regression approach to a single-index model [J].
Choi, Taeryon ;
Shi, Jian Q. ;
Wang, Bo .
JOURNAL OF NONPARAMETRIC STATISTICS, 2011, 23 (01) :21-36
[5]   Quantile regression for longitudinal data using the asymmetric Laplace distribution [J].
Geraci, Marco ;
Bottai, Matteo .
BIOSTATISTICS, 2007, 8 (01) :140-154
[6]   Gaussian Process Single-Index Models as Emulators for Computer Experiments [J].
Gramacy, Robert B. ;
Lian, Heng .
TECHNOMETRICS, 2012, 54 (01) :30-41
[7]   OPTIMAL SMOOTHING IN SINGLE-INDEX MODELS [J].
HARDLE, W ;
HALL, P ;
ICHIMURA, H .
ANNALS OF STATISTICS, 1993, 21 (01) :157-178
[8]   INVESTIGATING SMOOTH MULTIPLE-REGRESSION BY THE METHOD OF AVERAGE DERIVATIVES [J].
HARDLE, W ;
STOKER, TM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (408) :986-995
[9]   Bayesian quantile regression for single-index models [J].
Hu, Yuao ;
Gramacy, Robert B. ;
Lian, Heng .
STATISTICS AND COMPUTING, 2013, 23 (04) :437-454
[10]   Single-index composite quantile regression for massive data [J].
Jiang, Rong ;
Yu, Keming .
JOURNAL OF MULTIVARIATE ANALYSIS, 2020, 180