pH-Responsive, Charge-Reversing Layer-by-Layer Nanoparticle Surfaces Enhance Biofilm Penetration and Eradication

被引:6
作者
Deiss-Yehiely, Elad [1 ,2 ]
Carcamo-Oyarce, Gerardo [3 ]
Berger, Adam G. [2 ,4 ,5 ]
Ribbeck, Katharina [3 ]
Hammond, Paula T. [2 ,4 ,6 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02142 USA
[2] MIT, Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA
[3] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
[4] MIT, Inst Soldier Nanotechnol, Cambridge, MA 02139 USA
[5] MIT, Harvard MIT Hlth Sci & Technol, Cambridge, MA 02139 USA
[6] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
基金
新加坡国家研究基金会;
关键词
biofilm; nano-bio; stimulus-responsive; liposome; drug delivery; cystic fibrosis; PSEUDOMONAS-AERUGINOSA; RESISTANCE; MECHANISMS; TOXICITY; RELEASE;
D O I
10.1021/acsbiomaterials.3c00481
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Microbes entrenched within biofilms can withstand 1000-foldhigherconcentrations of antibiotics, in part due to the viscous extracellularmatrix that sequesters and attenuates antimicrobial activity. Nanoparticle(NP)-based therapeutics can aid in delivering higher local concentrationsthroughout biofilms as compared to free drugs alone, thereby enhancingthe efficacy. Canonical design criteria dictate that positively chargednanoparticles can multivalently bind to anionic biofilm componentsand increase biofilm penetration. However, cationic particles aretoxic and are rapidly cleared from circulation in vivo, limiting theiruse. Therefore, we sought to design pH-responsive NPs that changetheir surface charge from negative to positive in response to thereduced biofilm pH microenvironment. We synthesized a family of pH-dependent,hydrolyzable polymers and employed the layer-by-layer (LbL) electrostaticassembly method to fabricate biocompatible NPs with these polymersas the outermost surface. The NP charge conversion rate, dictatedby polymer hydrophilicity and the side-chain structure, ranged fromhours to undetectable within the experimental timeframe. LbL NPs withan increasingly fast charge conversion rate more effectively penetratedthrough, and accumulated throughout, wildtype (PAO1) and mutant overexpressingbiomass (& UDelta;wspF) Pseudomonasaeruginosa biofilms. Finally, tobramycin, an antibioticknown to be trapped by anionic biofilm components, was loaded intothe final layer of the LbL NP. There was a 3.2-fold reduction in & UDelta;wspF colony forming units for the fastest charge-convertingNP as compared to both the slowest charge converter and free tobramycin.These studies provide a framework for the design of biofilm-penetratingNPs that respond to matrix interactions, ultimately increasing theefficacious delivery of antimicrobials.
引用
收藏
页码:4794 / 4804
页数:11
相关论文
共 59 条
  • [1] Layer-by-Layer Biomaterials for Drug Delivery
    Alkekhia, Dahlia
    Hammond, Paula T.
    Shukla, Anita
    [J]. ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, VOL 22, 2020, 22 : 1 - 24
  • [2] Individual pKa Values of Tobramycin, Kanamycin B, Amikacin, Sisomicin, and Netilmicin Determined by Multinuclear NMR Spectroscopy
    Alkhzem, Abdulaziz H.
    Woodman, Timothy J.
    Blagbrough, Ian S.
    [J]. ACS OMEGA, 2020, 5 (33): : 21094 - 21103
  • [3] The biofilm matrix
    Flemming, Hans-Curt
    Wingender, Jost
    [J]. NATURE REVIEWS MICROBIOLOGY, 2010, 8 (09) : 623 - 633
  • [4] Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge
    Arvizo, Rochelle R.
    Rana, Subinoy
    Miranda, Oscar R.
    Bhattacharya, Resham
    Rotello, Vincent M.
    Mukherjee, Priyabrata
    [J]. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2011, 7 (05) : 580 - 587
  • [5] PEGylation of Tobramycin Improves Mucus Penetration and Antimicrobial Activity against Pseudomonas aeruginosa Biofilms in Vitro
    Bahamondez-Canas, Tania F.
    Zhang, Hairui
    Tewes, Frederic
    Leal, Jasmim
    Smyth, Hugh D. C.
    [J]. MOLECULAR PHARMACEUTICS, 2018, 15 (04) : 1643 - 1652
  • [6] Doxil® - The first FDA-approved nano-drug: Lessons learned
    Barenholz, Yechezkel
    [J]. JOURNAL OF CONTROLLED RELEASE, 2012, 160 (02) : 117 - 134
  • [7] Nanoparticles for Oral Biofilm Treatments
    Benoit, Danielle S. W.
    Sims, Kenneth R., Jr.
    Fraser, David
    [J]. ACS NANO, 2019, 13 (05) : 4869 - 4875
  • [8] The Extracellular Matrix Component Psl Provides Fast-Acting Antibiotic Defense in Pseudomonas aeruginosa Biofilms
    Billings, Nicole
    Millan, Maria Ramirez
    Caldara, Marina
    Rusconi, Roberto
    Tarasova, Yekaterina
    Stocker, Roman
    Ribbeck, Katharina
    [J]. PLOS PATHOGENS, 2013, 9 (08)
  • [9] Principles of nanoparticle design for overcoming biological barriers to drug delivery
    Blanco, Elvin
    Shen, Haifa
    Ferrari, Mauro
    [J]. NATURE BIOTECHNOLOGY, 2015, 33 (09) : 941 - 951
  • [10] Stimuli-Responsive Nanomaterials for Biomedical Applications
    Blum, Angela P.
    Kammeyer, Jacquelin K.
    Rush, Anthony M.
    Callmann, Cassandra E.
    Hahn, Michael E.
    Gianneschi, Nathan C.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (06) : 2140 - 2154