Multi-Site MRI Data Harmonization with an Adversarial Learning Approach: Implementation to the Study of Brain Connectivity in Autism Spectrum Disorders

被引:0
作者
Campo, Federico [1 ,2 ]
Retico, Alessandra [2 ]
Calderoni, Sara [3 ,4 ]
Oliva, Piernicola [5 ,6 ]
机构
[1] Univ Pisa, Dept Phys, I-56127 Pisa, Italy
[2] Natl Inst Nucl Phys INFN, Pisa Div, I-56127 Pisa, Italy
[3] IRCCS Stella Maris Fdn, Dev Psychiat Unit, I-56127 Pisa, Italy
[4] Univ Pisa, Dept Clin & Expt Med, I-56127 Pisa, Italy
[5] Univ Sassari, Dept Chem Phys Math & Nat Sci, I-07100 Sassari, Italy
[6] INFN, Cagliari Div, I-09042 Cagliari, Italy
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 11期
关键词
brain connectivity; machine learning; adversarial learning; autism spectrum disorders (ASD); multi-site harmonization; explainable AI (XAI); FUNCTIONAL CONNECTIVITY; CHILDREN; INDIVIDUALS;
D O I
10.3390/app13116486
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Magnetic resonance imaging (MRI) nowadays plays an important role in the identification of brain underpinnings in a wide range of neuropsychiatric disorders, including Autism Spectrum Disorders (ASD). Characterizing the hallmarks in these pathologies is not a straightforward task and machine learning (ML) is certainly one of the most promising tools for addressing complex and non-linear problems. ML algorithms and, in particular, deep neural networks (DNNs), need large datasets in order to be properly trained and thus ensure generalization capabilities on new data. Large datasets can be obtained by collecting images from different centers, thus bringing unavoidable biases in the analysis due to differences in hardware and scanning protocols between different centers. In this work, we dealt with the issue of multicenter MRI data harmonization by comparing two different approaches: the analytical ComBat-GAM procedure, whose effectiveness is already documented in the literature, and an originally developed site-adversarial deep neural network (ad-DNN). The latter aims to perform a classification task while simultaneously searching for site-relevant patterns in order to make predictions free from site-related biases. As a case study, we implemented DNN and ad-DNN classifiers to distinguish subjects with ASD with respect to typical developing controls based on functional connectivity measures derived from data of the multicenter ABIDE collection. The classification performance of the proposed ad-DNN, measured in terms of the area under the ROC curve (AUC), achieved the value of AUC = 0.70 +/- 0.03, which is comparable to that obtained by a DNN on data harmonized according to the analytical procedure (AUC = 0.71 +/- 0.01). The relevant functional connectivity alterations identified by both procedures showed an agreement between each other and with the patterns of neuroanatomical alterations previously detected in the same cohort of subjects.
引用
收藏
页数:16
相关论文
共 36 条
  • [1] Underconnectivity between voice-selective cortex and reward circuitry in children with autism
    Abrams, Daniel A.
    Lynch, Charles J.
    Cheng, Katherine M.
    Phillips, Jennifer
    Supekar, Kaustubh
    Ryali, Srikanth
    Uddin, Lucina Q.
    Menon, Vinod
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (29) : 12060 - 12065
  • [2] American Psychiatric Association, 2013, DIAGN STAT MAN MENT, Vfifth
  • [4] The social motivation theory of autism
    Chevallier, Coralie
    Kohls, Gregor
    Troiani, Vanessa
    Brodkin, Edward S.
    Schultz, Robert T.
    [J]. TRENDS IN COGNITIVE SCIENCES, 2012, 16 (04) : 231 - 239
  • [5] Candidate diagnostic biomarkers for neurodevelopmental disorders in children and adolescents: a systematic review
    Cortese, Samuele
    Solmi, Marco
    Michelini, Giorgia
    Bellato, Alessio
    Blanner, Christina
    Canozzi, Andrea
    Eudave, Luis
    Farhat, Luis C.
    Hojlund, Mikkel
    Kohler-Forsberg, Ole
    Leffa, Douglas Teixeira
    Rohde, Christopher
    de Pablo, Gonzalo Salazar
    Vita, Giovanni
    Wesselhoeft, Rikke
    Martin, Joanna
    Baumeister, Sarah
    Bozhilova, Natali S.
    Carlisi, Christina O.
    Leno, Virginia Carter
    Floris, Dorothea L.
    Holz, Nathalie E.
    Kraaijenvanger, Eline J.
    Sacu, Seda
    Vainieri, Isabella
    Ostuzzi, Giovanni
    Barbui, Corrado
    Correll, Christoph U.
    [J]. WORLD PSYCHIATRY, 2023, 22 (01) : 129 - 149
  • [6] The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism
    Di Martino, A.
    Yan, C-G
    Li, Q.
    Denio, E.
    Castellanos, F. X.
    Alaerts, K.
    Anderson, J. S.
    Assaf, M.
    Bookheimer, S. Y.
    Dapretto, M.
    Deen, B.
    Delmonte, S.
    Dinstein, I.
    Ertl-Wagner, B.
    Fair, D. A.
    Gallagher, L.
    Kennedy, D. P.
    Keown, C. L.
    Keysers, C.
    Lainhart, J. E.
    Lord, C.
    Luna, B.
    Menon, V.
    Minshew, N. J.
    Monk, C. S.
    Mueller, S.
    Mueller, R. A.
    Nebel, M. B.
    Nigg, J. T.
    O'Hearn, K.
    Pelphrey, K. A.
    Peltier, S. J.
    Rudie, J. D.
    Sunaert, S.
    Thioux, M.
    Tyszka, J. M.
    Uddin, L. Q.
    Verhoeven, J. S.
    Wenderoth, N.
    Wiggins, J. L.
    Mostofsky, S. H.
    Milham, M. P.
    [J]. MOLECULAR PSYCHIATRY, 2014, 19 (06) : 659 - 667
  • [7] Data Descriptor: Enhancing studies of the connectome in autism using the autism brain imaging data exchange II
    Di Martino, Adriana
    O'Connor, David
    Chen, Bosi
    Alaerts, Kaat
    Anderson, Jeffrey S.
    Assaf, Michal
    Balsters, Joshua H.
    Baxter, Leslie
    Beggiato, Anita
    Bernaerts, Sylvie
    Blanken, Laura M. E.
    Bookheimer, Susan Y.
    Braden, B. Blair
    Byrge, Lisa
    Castellanos, F. Xavier
    Dapretto, Mirella
    Delorme, Richard
    Fair, Damien A.
    Fishman, Inna
    Fitzgerald, Jacqueline
    Gallagher, Louise
    Keehn, R. Joanne Jao
    Kennedy, Daniel P.
    Lainhart, Janet E.
    Luna, Beatriz
    Mostofsky, Stewart H.
    Muller, Ralph-Axel
    Nebel, Mary Beth
    Nigg, Joel T.
    O'Hearn, Kirsten
    Solomon, Marjorie
    Toro, Roberto
    Vaidya, Chandan J.
    Wenderoth, Nicole
    White, Tonya
    Craddock, R. Cameron
    Lord, Catherine
    Leventhal, Bennett
    Milham, Michael P.
    [J]. SCIENTIFIC DATA, 2017, 4
  • [8] Language comprehension and brain function in individuals with an optimal outcome from autism
    Eigsti, Inge-Marie
    Stevens, Michael C.
    Schultz, Robert T.
    Barton, Marianne
    Kelley, Elizabeth
    Naigles, Letitia
    Orinstein, Alyssa
    Troy, Eva
    Fein, Deborah A.
    [J]. NEUROIMAGE-CLINICAL, 2016, 10 : 182 - 191
  • [9] An introduction to ROC analysis
    Fawcett, Tom
    [J]. PATTERN RECOGNITION LETTERS, 2006, 27 (08) : 861 - 874
  • [10] Harmonization of multi-site diffusion tensor imaging data
    Fortin, Jean-Philippe
    Parker, Drew
    Tunc, Birkan
    Watanabe, Takanori
    Elliott, Mark A.
    Ruparel, Kosha
    Roalf, David R.
    Satterthwaite, Theodore D.
    Gur, Ruben C.
    Gur, Raquel E.
    Schultz, Robert T.
    Verma, Ragini
    Shinohara, Russell T.
    [J]. NEUROIMAGE, 2017, 161 : 149 - 170