Time Coding-Based Single-Photon-Counting Lidar for Obtaining Spatial Location

被引:0
作者
Zhang, Hanfu [1 ,2 ,3 ]
Liu, Jie [1 ,3 ,4 ]
An, Qichang [1 ,3 ]
Wang, Jianli [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Jilin Prov Key Lab Intelligent Wavefront Sensing &, Changchun 130033, Peoples R China
[4] Chinese Acad Sci, Key Lab Space Object & Debris Observat, Nanjing 210000, Peoples R China
关键词
single-photon-counting; spatial location; time coding; 1550; NM; LASER; RANGE;
D O I
10.3390/photonics10040457
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper proposes a single-photon-counting lidar based on time coding that can obtain the target's spatial location and measure the distance and azimuth angle in real time without needing a scanning device. Multiple optical fibers were used to introduce laser echo photons into a single-pixel single-photon detector. According to the deviation in the detection time of the echo photons passing through different optical fibers, multiple distances can be obtained simultaneously. Combining the measured distances with the fiber spacing allows the calculation of the distance, azimuth angle, and spatial coordinates of the target. This lidar has the advantages of high photon detection efficiency, short signal acquisition time, and low cost compared to array detectors.
引用
收藏
页数:12
相关论文
共 34 条
  • [1] Lunar Global Shape and Polar Topography Derived from Kaguya-LALT Laser Altimetry
    Araki, H.
    Tazawa, S.
    Noda, H.
    Ishihara, Y.
    Goossens, S.
    Sasaki, S.
    Kawano, N.
    Kamiya, I.
    Otake, H.
    Oberst, J.
    Shum, C.
    [J]. SCIENCE, 2009, 323 (5916) : 897 - 900
  • [2] High-resolution non-line-of-sight imaging employing active focusing
    Cao, Ruizhi
    de Goumoens, Frederic
    Blochet, Baptiste
    Xu, Jian
    Yang, Changhuei
    [J]. NATURE PHOTONICS, 2022, 16 (06) : 462 - +
  • [3] [陈芳芳 Chen Fangfang], 2015, [红外技术, Infrared Technology], V37, P496
  • [4] High-speed photon-counting laser ranging for broad range of distances
    Du, Bingcheng
    Pang, Chengkai
    Wu, Di
    Li, Zhaohui
    Peng, Huan
    Tao, Yuliang
    Wu, E.
    Wu, Guang
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [5] Single-pixel imaging via compressive sampling
    Duarte, Marco F.
    Davenport, Mark A.
    Takhar, Dharmpal
    Laska, Jason N.
    Sun, Ting
    Kelly, Kevin F.
    Baraniuk, Richard G.
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (02) : 83 - 91
  • [6] Geodetic imaging with airborne LiDAR: the Earth's surface revealed
    Glennie, C. L.
    Carter, W. E.
    Shrestha, R. L.
    Dietrich, W. E.
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2013, 76 (08)
  • [7] Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications
    Kim, II
    McArthur, B
    Korevaar, E
    [J]. OPTICAL WIRELESS COMMUNICATIONS III, 2001, 4214 : 26 - 37
  • [8] First-Photon Imaging
    Kirmani, Ahmed
    Venkatraman, Dheera
    Shin, Dongeek
    Colaco, Andrea
    Wong, Franco N. C.
    Shapiro, Jeffrey H.
    Goyal, Vivek K.
    [J]. SCIENCE, 2014, 343 (6166) : 58 - 61
  • [9] RANDOM POINT PROCESSES - SNYDER,DL
    LAWRANCE, AJ
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 1976, 139 : 547 - 547
  • [10] Multi-beam single-photon-counting three-dimensional imaging lidar
    Li, Zhaohui
    Wu, E.
    Pang, Chengkai
    Du, Bingcheng
    Tao, Yuliang
    Peng, Huan
    Zeng, Heping
    Wu, Guang
    [J]. OPTICS EXPRESS, 2017, 25 (09): : 10189 - 10195