Soliton resolution for the radial critical wave equation in all odd space dimensions

被引:12
作者
Duyckaerts, Thomas [1 ]
Kenig, Carlos [2 ]
Merle, Frank [3 ]
机构
[1] Univ Paris 13, Sorbonne Paris Cite LAGA, UMR CNRS 7539, 99 Ave JB Clement, FR-93430 Villetaneuse, France
[2] Univ Chicago, Dept Math, 5734 S Univ Ave, Chicago, IL 60637 USA
[3] Univ Cergy Pontoise, Dept Math, 2 Av Adolphe Chauvin, FR-95302 Cergy, France
关键词
BLOW-UP SOLUTIONS; GLOBAL WELL-POSEDNESS; NONLINEAR SCHRODINGER-EQUATION; LARGE ENERGY SOLUTIONS; SEMILINEAR WAVE; STRICHARTZ INEQUALITIES; ASYMPTOTIC SOLUTIONS; CONSERVATION LAWS; ELLIPTIC EQUATION; SCATTERING;
D O I
10.4310/ACTA.2023.v230.n1.a1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:1 / 92
页数:92
相关论文
共 68 条
  • [1] High frequency approximation of solutions to critical nonlinear wave equations
    Bahouri, H
    Gérard, P
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1999, 121 (01) : 131 - 175
  • [2] Long time asymptotic behavior of the focusing nonlinear Schrodinger equation
    Borghese, Michael
    Jenkins, Robert
    McLaughlin, Kenneth D. T-R
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (04): : 887 - 920
  • [3] Stability and Unconditional Uniqueness of Solutions for Energy Critical Wave Equations in High Dimensions
    Bulut, Aynur
    Czubak, Magdalena
    Li, Dong
    Pavlovic, Natasa
    Zhang, Xiaoyi
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2013, 38 (04) : 575 - 607
  • [4] Bulut A, 2010, DIFFER INTEGRAL EQU, V23, P1035
  • [5] ON THE ASYMPTOTIC-BEHAVIOR OF SPHERICALLY SYMMETRICAL WAVE MAPS
    CHRISTODOULOU, D
    TAHVILDARZADEH, AS
    [J]. DUKE MATHEMATICAL JOURNAL, 1993, 71 (01) : 31 - 69
  • [6] Profiles for the Radial Focusing 4d Energy-Critical Wave Equation
    Cote, R.
    Kenig, C. E.
    Lawrie, A.
    Schlag, W.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 357 (03) : 943 - 1008
  • [7] On the Soliton Resolution for Equivariant Wave Maps to the Sphere
    Cote, R.
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (11) : 1946 - 2004
  • [8] CHARACTERIZATION OF LARGE ENERGY SOLUTIONS OF THE EQUIVARIANT WAVE MAP PROBLEM: I
    Cote, R.
    Kenig, C. E.
    Lawrie, A.
    Schlag, W.
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2015, 137 (01) : 139 - 207
  • [9] Côte R, 2015, AM J MATH, V137, P209, DOI 10.1353/ajm.2015.0003
  • [10] Energy partition for the linear radial wave equation
    Cote, Raphael
    Kenig, Carlos E.
    Schlag, Wilhelm
    [J]. MATHEMATISCHE ANNALEN, 2014, 358 (3-4) : 573 - 607