Adaptive Backstepping Terminal Sliding Mode Control of Nonlinear System Using Fuzzy Neural Structure

被引:6
作者
Gong, Xiaoyu [1 ]
Fu, Wen [2 ]
Bian, Xingao [2 ]
Fei, Juntao [1 ,2 ]
机构
[1] Hohai Univ, Coll IoT Engn, Jiangsu Key Lab Power Transmiss & Distribut Equipm, Changzhou 213022, Peoples R China
[2] Hohai Univ, Coll Mech & Elect Engn, Changzhou 213022, Peoples R China
基金
美国国家科学基金会;
关键词
multiple-layer fuzzy neural network; recurrent neural network; adaptive projection algorithm; adaptive backstepping terminal sliding mode control; ROBUST; DESIGN;
D O I
10.3390/math11051094
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An adaptive backstepping terminal sliding mode control (ABTSMC) method based on a multiple-layer fuzzy neural network is proposed for a class of nonlinear systems with parameter variations and external disturbances in this study. The proposed neural network is utilized to estimate the nonlinear function to handle the unknown uncertainties of the system and reduce the switching term gain. It has a strong learning ability and high approximation accuracy due to the combination of a fuzzy neural network and recurrent neural network. The neural network parameters can be adaptively adjusted to optimal values through the adaptive laws derived from the Lyapunov theorem. To stabilize the control signal, the additional parameter adaptive law derived by the adaptive projection algorithm is used to estimate the control coefficient. The terminal sliding mode control (TSMC) is introduced on the basis of backstepping control, which can ensure that the tracking error converges in finite time. The simulation example is carried out on the DC-DC buck converter model to verify the effectiveness and superiority of the proposed control method. The contrasting results show that the ABTSMC-DHLRNN possesses higher steady-state accuracy and faster transient response.
引用
收藏
页数:21
相关论文
共 45 条
  • [1] Observer-Based Backstepping Sliding Mode Control Design for Microgrids Feeding a Constant Power Load
    Alipour, Mohammad
    Zarei, Jafar
    Razavi-Far, Roozbeh
    Saif, Mehrdad
    Mijatovic, Nenad
    Dragicevic, Tomislav
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (01) : 465 - 473
  • [2] Fuzzy Approximation-Based Fractional-Order Nonsingular Terminal Sliding Mode Controller for DC-DC Buck Converters
    Babes, Badreddine
    Mekhilef, Saad
    Boutaghane, Amar
    Rahmani, Lazhar
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (03) : 2749 - 2760
  • [3] Adaptive Backstepping Control for a Class of Nonlinear Systems With Non-Triangular Structural Uncertainties
    Cai, Jianping
    Wen, Changyun
    Su, Hongye
    Liu, Zhitao
    Xing, Lantao
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (10) : 5220 - 5226
  • [4] Robust Backstepping Sliding-Mode Control and Observer-Based Fault Estimation for a Quadrotor UAV
    Chen, Fuyang
    Jiang, Rongqiang
    Zhang, Kangkang
    Jiang, Bin
    Tao, Gang
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (08) : 5044 - 5056
  • [5] Change Detection in Multisource VHR Images via Deep Siamese Convolutional Multiple-Layers Recurrent Neural Network
    Chen, Hongruixuan
    Wu, Chen
    Du, Bo
    Zhang, Liangpei
    Wang, Le
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (04): : 2848 - 2864
  • [6] Adaptive Fuzzy Sliding Mode Control for Network-Based Nonlinear Systems With Actuator Failures
    Chen, Liheng
    Liu, Ming
    Huang, Xianlin
    Fu, Shasha
    Qiu, Jianbin
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2018, 26 (03) : 1311 - 1323
  • [7] Robust Optimal Control of High-Speed Permanent-Magnet Synchronous Motor Drives via Self-Constructing Fuzzy Wavelet Neural Network
    El-Sousy, Fayez F. M.
    Amin, Mahmoud M.
    Mohammed, Osama A.
    [J]. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2021, 57 (01) : 999 - 1013
  • [8] Adaptive Nonlinear Disturbance Observer Using a Double-Loop Self-Organizing Recurrent Wavelet Neural Network for a Two-Axis Motion Control System
    El-Sousy, Fayez F. M.
    Abuhasel, Khaled Ali
    [J]. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2018, 54 (01) : 764 - 786
  • [9] Self-Evolving Recurrent Chebyshev Fuzzy Neural Sliding Mode Control for Active Power Filter
    Fei, Juntao
    Wang, Zhe
    Fang, Yunmei
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (03) : 2729 - 2739
  • [10] Fuzzy Multiple Hidden Layer Recurrent Neural Control of Nonlinear System Using Terminal Sliding-Mode Controller
    Fei, Juntao
    Chen, Yun
    Liu, Lunhaojie
    Fang, Yunmei
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (09) : 9519 - 9534