Gaussian fluctuation for spatial average of super-Brownian motion

被引:3
作者
Li, Zenghu [1 ]
Pu, Fei [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Beijing 100875, Peoples R China
基金
国家重点研发计划; 美国国家科学基金会;
关键词
super-Brownian motion; stochastic heat equation; central limit theorem; CENTRAL-LIMIT-THEOREM; EQUATION;
D O I
10.1080/07362994.2022.2079530
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {u(t,x)}((t,x)is an element of R+xR) be the density of one-dimensional super-Brownian motion starting from Lebesgue measure. Using the Laplace functional of super-Brownian motion, we , prove that as N -> infinity the normalized spatial integral N-1/2 integral(xN)(0) [u(t ,z) - 1] dz converges jointly in (t, x) to Brownian sheet in distribution.
引用
收藏
页码:752 / 769
页数:18
相关论文
共 25 条
[1]  
Balan R.M., 2022, PREPRINT
[2]  
Balan R.M., 2021, PREPRINT
[3]   CONVERGENCE CRITERIA FOR MULTIPARAMETER STOCHASTIC PROCESSES AND SOME APPLICATIONS [J].
BICKEL, PJ ;
WICHURA, MJ .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (05) :1656-&
[4]  
Chen L., 2014, STOCK PARTIAL DIFFER, V2, P316
[5]   Central limit theorems for parabolic stochastic partial differential equations [J].
Chen, Le ;
Khoshnevisan, Davar ;
Nualart, David ;
Pu, Fei .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (02) :1052-1077
[6]   Central limit theorems for spatial averages of the stochastic heat equation via Malliavin-Stein's method [J].
Chen, Le ;
Khoshnevisan, Davar ;
Nualart, David ;
Pu, Fei .
STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2023, 11 (01) :122-176
[7]   Spatial ergodicity and central limit theorems for parabolic Anderson model with delta initial condition [J].
Chen, Le ;
Khoshnevisan, Davar ;
Nualart, David ;
Pu, Fei .
JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 282 (02)
[8]  
Dawson D.A., 1993, Lecture Notes in Mathematics, V1541, P1
[9]   A Central Limit Theorem for the stochastic wave equation with fractional noise [J].
Delgado-Vences, Francisco ;
Nualart, David ;
Zheng, Guangqu .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (04) :3020-3042
[10]  
Etheridge A., 2000, An Introduction to Superprocesses