Automated segmentation of cell organelles in volume electron microscopy using deep learning

被引:8
作者
Nesic, Nebojsa [1 ]
Heiligenstein, Xavier [2 ]
Zopf, Lydia [3 ,4 ]
Blueml, Valentin [3 ]
Keuenhof, Katharina S. [5 ]
Wagner, Michael [6 ]
Hoog, Johanna L. [5 ]
Qi, Heng [7 ]
Li, Zhiyang [8 ]
Tsaramirsis, Georgios [9 ]
Peddie, Christopher J. [10 ]
Stojmenovic, Milos [1 ]
Walter, Andreas [6 ,11 ]
机构
[1] Singidunum Univ, Dept Comp Sci & Elect Engn, Belgrade, Serbia
[2] CryoCapCell, Le Kremlin Bicetre, France
[3] Vienna Bioctr Core Facil, Austrian BioImaging, Vienna, Austria
[4] AUVA Trauma Res Ctr, Ludwig Boltzmann Inst Expt & Clin Traumatol, Vienna, Austria
[5] Univ Gothenburg, Dept Chem & Mol Biol, Gothenburg, Sweden
[6] Aalen Univ, Ctr Opt Technol, Aalen, Germany
[7] Dalian Univ Technol, Dept Comp Sci, Dalian, Peoples R China
[8] Dalian Maritime Univ, Dept Comp Sci & Technol, Dalian, Peoples R China
[9] Higher Coll Technol, Fac Comp Informat Sys, Abu Dhabi, U Arab Emirates
[10] Francis Crick Inst, Electron Microscopy STP, London, England
[11] Aalen Univ Appl Sci, Aalen, Germany
基金
英国医学研究理事会; 瑞典研究理事会; 英国惠康基金;
关键词
automated segmentation; cell biology; image analysis; neural-network; volume electron microscopy; IMAGE; YEAST;
D O I
10.1002/jemt.24548
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
Recent advances in computing power triggered the use of artificial intelligence in image analysis in life sciences. To train these algorithms, a large enough set of certified labeled data is required. The trained neural network is then capable of producing accurate instance segmentation results that will then need to be re-assembled into the original dataset: the entire process requires substantial expertise and time to achieve quantifiable results. To speed-up the process, from cell organelle detection to quantification across electron microscopy modalities, we propose a deep-learning based approach for fast automatic outline segmentation (FAMOUS), that involves organelle detection combined with image morphology, and 3D meshing to automatically segment, visualize and quantify cell organelles within volume electron microscopy datasets. From start to finish, FAMOUS provides full segmentation results within a week on previously unseen datasets. FAMOUS was showcased on a HeLa cell dataset acquired using a focused ion beam scanning electron microscope, and on yeast cells acquired by transmission electron tomography.Research Highlights Introducing a rapid, multimodal machine-learning workflow for the automatic segmentation of 3D cell organelles. Successfully applied to a variety of volume electron microscopy datasets and cell lines. Outperforming manual segmentation methods in time and accuracy. Enabling high-throughput quantitative cell biology. Our deep-learning based segmentation workflow efficiently quantifies 3D subcellular structures in diverse electron microscopy modalities and cell lines, outperforming manual segmentation. It promises high-throughput quantitative cell biology, ensuring rapid and accurate analysis for meaningful statistical insights. image
引用
收藏
页码:1718 / 1732
页数:15
相关论文
共 28 条
[1]  
[Anonymous], 2022, ETCH CELL
[2]  
Arganda-Carreras I., 2016, Trainable_Segmentation: Release v3.1.2
[3]  
ariadne.ai, 2022, AI POWERED BIOMEDICA
[4]   ilastik: interactive machine learning for (bio) image analysis [J].
Berg, Stuart ;
Kutra, Dominik ;
Kroeger, Thorben ;
Straehle, Christoph N. ;
Kausler, Bernhard X. ;
Haubold, Carsten ;
Schiegg, Martin ;
Ales, Janez ;
Beier, Thorsten ;
Rudy, Markus ;
Eren, Kemal ;
Cervantes, Jaime I. ;
Xu, Buote ;
Beuttenmueller, Fynn ;
Wolny, Adrian ;
Zhang, Chong ;
Koethe, Ullrich ;
Hamprecht, Fred A. ;
Kreshuk, Anna .
NATURE METHODS, 2019, 16 (12) :1226-1232
[5]  
Blender Online Community, 2021, Blender-A 3D Modelling and Rendering Package
[6]  
Bochkovskiy A., 2020, YOLOv4: Optimal Speed and Accuracy of Object Detection
[7]   CellProfiler: image analysis software for identifying and quantifying cell phenotypes [J].
Carpenter, Anne E. ;
Jones, Thouis Ray ;
Lamprecht, Michael R. ;
Clarke, Colin ;
Kang, In Han ;
Friman, Ola ;
Guertin, David A. ;
Chang, Joo Han ;
Lindquist, Robert A. ;
Moffat, Jason ;
Golland, Polina ;
Sabatini, David M. .
GENOME BIOLOGY, 2006, 7 (10)
[8]   3-DIMENSIONAL RECONSTRUCTION AND ANALYSIS OF MITOTIC SPINDLES FROM THE YEAST, SCHIZOSACCHAROMYCES-POMBE [J].
DING, R ;
MCDONALD, KL ;
MCINTOSH, JR .
JOURNAL OF CELL BIOLOGY, 1993, 120 (01) :141-151
[9]   Decreased Oligodendrocyte Nuclear Diameter in Alzheimer's Disease and Lewy Body Dementia [J].
Gagyi, Eva ;
Kormos, Bernadett ;
Castellanos, Karla J. ;
Valyi-Nagy, Klara ;
Korneff, Dennis ;
LoPresti, Patrizia ;
Woltjer, Randy ;
Valyi-Nagy, Tibor .
BRAIN PATHOLOGY, 2012, 22 (06) :803-810
[10]   HPM live μ for a full CLEM workflow [J].
Heiligenstein, Xavier ;
De Beer, Marit ;
Heiligenstein, Jerome ;
Eyraud, Frederique ;
Manet, Laurent ;
Schmitt, Fabrice ;
Lamers, Edwin ;
Lindenau, Joerg ;
Lindert, Mariska Kea-te ;
Salamero, Jean ;
Raposo, Grace ;
Sommerdijk, Nico ;
Belle, Martin ;
Akiva, Anat .
CORRELATIVE LIGHT AND ELECTRON MICROSCOPY IV, 2021, 162 :115-149