Modeling the dynamics of mixed immunotherapy and chemotherapy for the treatment of immunogenic tumor

被引:0
作者
Sardar, Mrinmoy [1 ]
Biswas, Santosh [1 ]
Khajanchi, Subhas [2 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, India
[2] Presidency Univ, Dept Math, 86-1 Coll St, Kolkata 700073, India
关键词
MATHEMATICAL-MODEL; IMMUNE-RESPONSE; CANCER; GROWTH; CELLS; PHARMACOKINETICS; PHARMACODYNAMICS; STABILITY; EFFICACY; BETA;
D O I
10.1140/epjp/s13360-024-05004-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate a mathematical model that delineates the nonlinear dynamics of tumor-immune interplay by considering the roles of immunotherapy and chemotherapy. The proposed model explores a system of coupled nonlinear ordinary differential equations (ODEs), involving tumor cells, cytotoxic T-lymphocytes (CD8+T cells), macrophages, dendritic cells, regulatory T-cells (Tregs), IL-10, TGF-beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}, IL-12, IFN-gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document} and the concentration of chemotherapeutic drug. We use optimal control theory to understand the dynamics under what conditions the immune system can eradicate tumor cells. The control problem is solved with an objective functional that minimizes the tumor cell population and maximizes the immune components. The basic properties of optimal control theory are established through the boundedness of solutions for each state variable. Our optimal control theory is characterized by coupling the state variables with costates. Additionally, our study investigates the uniqueness property of the optimal control problem within a small time window. Subsequently, we explored the methods employed to estimate the system parameters. Finally, we demonstrate numerically that the optimal control strategy minimizes the burden of tumor cells and maximizes immune cell populations under different scenarios. Moreover, we provide corresponding biological implications.
引用
收藏
页数:26
相关论文
共 52 条
  • [1] Adam J., 1999, A Survey of Models for Tumor Immune Dynamics
  • [2] Afansev V. N., 1996, Mathematical Theory of Control Systems Design, DOI [10.1007/978-94-017-2203-2, DOI 10.1007/978-94-017-2203-2]
  • [3] A Mathematical Model to Elucidate Brain Tumor Abrogation by Immunotherapy with T11 Target Structure
    Banerjee, Sandip
    Khajanchi, Subhas
    Chaudhuri, Swapna
    [J]. PLOS ONE, 2015, 10 (05):
  • [4] A mathematical model for lymphangiogenesis in normal and diabetic wounds
    Bianchi, Arianna
    Painter, Kevin J.
    Sherratt, Jonathan A.
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2015, 383 : 61 - 86
  • [5] Brauer F., 2012, Mathematical models in population biology and epidemiology, V2, DOI DOI 10.1007/978-1-4614-1686-9
  • [6] Burden T, 2004, DISCRETE CONT DYN-B, V4, P135
  • [7] A phase I/II study of recombinant human interleukin-12 in patients with chronic hepatitis B
    Carreño, V
    Zeuzem, S
    Hopf, U
    Marcellin, P
    Cooksley, WGE
    Fevery, J
    Diago, M
    Reddy, R
    Peters, M
    Rittweger, K
    Rakhit, A
    Pardo, M
    [J]. JOURNAL OF HEPATOLOGY, 2000, 32 (02) : 317 - 324
  • [8] Optimal control in a model of dendritic cell transfection cancer immunotherapy
    Castiglione, F
    Piccoli, B
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2006, 68 (02) : 255 - 274
  • [9] Dendritic cell density and activation status in human breast cancer - CD1a, CMRF-44, CMRF-56 and CD-83 expression
    Coventry, BJ
    Lee, PL
    Gibbs, D
    Hart, DNJ
    [J]. BRITISH JOURNAL OF CANCER, 2002, 86 (04) : 546 - 551
  • [10] Optimal control of mixed immunotherapy and chemotherapy of tumors
    De Pillis, L. G.
    Fister, K. R.
    Gu, W.
    Head, Tiffany
    Maples, Kenny
    Neal, Todd
    Murugan, Anand
    Kozai, Kenji
    [J]. JOURNAL OF BIOLOGICAL SYSTEMS, 2008, 16 (01) : 51 - 80