Overcoming Catastrophic Forgetting for Fine-Tuning Pre-trained GANs

被引:0
|
作者
Zhang, Zeren [1 ]
Li, Xingjian [2 ]
Hong, Tao [1 ]
Wang, Tianyang [3 ]
Ma, Jinwen [1 ]
Xiong, Haoyi [2 ]
Xu, Cheng-Zhong [4 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Baidu Inc, Beijing, Peoples R China
[3] Univ Alabama Birmingham, Birmingham, AL 35294 USA
[4] Univ Macau, Macau, Peoples R China
关键词
Transfer Learning; Generative Adversarial Networks;
D O I
10.1007/978-3-031-43424-2_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The great transferability of DNNs has induced a popular paradigm of "pre-training & fine-tuning", by which a data-scarce task can be performed much more easily. However, compared to the existing efforts made in the context of supervised transfer learning, fewer explorations have been made on effectively fine-tuning pre-trained Generative Adversarial Networks (GANs). As reported in recent empirical studies, fine-tuning GANs faces the similar challenge of catastrophic forgetting as in supervised transfer learning. This causes a severe capacity loss of the pre-trained model when adapting it to downstream datasets. While most existing approaches suggest to directly interfere parameter updating, this paper introduces novel schemes from another perspective, i.e. inputs and features, thus essentially focuses on data aspect. Firstly, we adopt a trust-region method to smooth the adaptation dynamics by progressively adjusting input distributions, aiming to avoid dramatic parameter changes, especially when the pre-trained GAN has no information of target data. Secondly, we aim to avoid the loss of the diversity of the generated results of the fine-tuned GAN. This is achieved by explicitly encouraging generated images to encompass diversified spectral components in their deep features. We theoretically study the rationale of the proposed schemes, and conduct extensive experiments on popular transfer learning benchmarks to demonstrate the superiority of the schemes. The code and corresponding supplemental materials are available at https://github.com/zezeze97/Transfer-Pretrained-Gan.
引用
收藏
页码:293 / 308
页数:16
相关论文
共 50 条
  • [21] Towards Fine-tuning Pre-trained Language Models with Integer Forward and Backward Propagation
    Tayaranian, Mohammadreza
    Ghaffari, Alireza
    Tahaei, Marzieh S.
    Rezagholizadeh, Mehdi
    Asgharian, Masoud
    Nia, Vahid Partovi
    17TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EACL 2023, 2023, : 1912 - 1921
  • [22] Fine-Tuning Pre-Trained Model to Extract Undesired Behaviors from App Reviews
    Zhang, Wenyu
    Wang, Xiaojuan
    Lai, Shanyan
    Ye, Chunyang
    Zhou, Hui
    2022 IEEE 22ND INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY, QRS, 2022, : 1125 - 1134
  • [23] Efficient Fine-Tuning for Low-Resource Tibetan Pre-trained Language Models
    Zhou, Mingjun
    Daiqing, Zhuoma
    Qun, Nuo
    Nyima, Tashi
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING-ICANN 2024, PT VII, 2024, 15022 : 410 - 422
  • [24] Fine-Tuning BERT-Based Pre-Trained Models for Arabic Dependency Parsing
    Al-Ghamdi, Sharefah
    Al-Khalifa, Hend
    Al-Salman, Abdulmalik
    APPLIED SCIENCES-BASEL, 2023, 13 (07):
  • [25] Fine-Tuning Pre-Trained Model for Consumer Fraud Detection from Consumer Reviews
    Tang, Xingli
    Li, Keqi
    Huang, Liting
    Zhou, Hui
    Ye, Chunyang
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2023, PT II, 2023, 14147 : 451 - 456
  • [26] Fine-tuning Pre-Trained Transformer Language Models to Distantly Supervised Relation Extraction
    Alt, Christoph
    Huebner, Marc
    Hennig, Leonhard
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 1388 - 1398
  • [27] Towards Anytime Fine-tuning: Continually Pre-trained Language Models with Hypernetwork Prompts
    Jiang, Gangwei
    Jiang, Caigao
    Xue, Sigiao
    Zhang, James Y.
    Zhou, Jun
    Lian, Defu
    Wei, Ying
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EMNLP 2023), 2023, : 12081 - 12095
  • [28] Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models
    Zhou, Kun
    Zhao, Wayne Xin
    Wang, Sirui
    Zhang, Fuzheng
    Wu, Wei
    We, Ji-Rong
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 3875 - 3887
  • [29] Sentiment Analysis Using Pre-Trained Language Model With No Fine-Tuning and Less Resource
    Kit, Yuheng
    Mokji, Musa Mohd
    IEEE ACCESS, 2022, 10 : 107056 - 107065
  • [30] Disfluencies and Fine-Tuning Pre-trained Language Models for Detection of Alzheimer's Disease
    Yuan, Jiahong
    Bian, Yuchen
    Cai, Xingyu
    Huang, Jiaji
    Ye, Zheng
    Church, Kenneth
    INTERSPEECH 2020, 2020, : 2162 - 2166