Evaluation of a Deep Learning-based Algorithm for Post-Radiotherapy Prostate Cancer Local Recurrence Detection Using Biparametric MRI

被引:5
作者
Yilmaz, Enis C. [1 ]
Harmon, Stephanie A. [1 ]
Belue, Mason J. [1 ]
Merriman, Katie M. [1 ]
Phelps, Tim E. [1 ]
Lin, Yue [1 ]
Garcia, Charisse [2 ,7 ]
Hazen, Lindsey [2 ,7 ]
Patel, Krishnan R. [3 ]
Merino, Maria J. [4 ]
Wood, Bradford J. [2 ,7 ]
Choyke, Peter L. [1 ]
Pinto, Peter A. [5 ]
Citrin, Deborah E. [3 ]
Turkbey, Baris [1 ,6 ,8 ]
机构
[1] NCI, NIH, Mol Imaging Branch, Bethesda, MD USA
[2] NCI, NIH, Ctr Intervent Oncol, Bethesda, MD USA
[3] NCI, NIH, Radiat Oncol Branch, Bethesda, MD USA
[4] NCI, NIH, Lab Pathol, Bethesda, MD USA
[5] NCI, NIH, Urol Oncol Branch, Bethesda, MD USA
[6] NCI, NIH, Mol Imaging Branch, 10 Ctr Dr,MSC 1182,Bldg 10,Room B3B85, Bethesda, MD USA
[7] NIH, Clin Ctr, Dept Radiol, Bethesda, MD USA
[8] NCI, Mol Imaging Branch, NIH, 10 Ctr Dr,MSC 1182,Bldg 10,Room B3B85, Bethesda, MD 20892 USA
关键词
Prostate cancer; Radiotherapy; Biochemical recurrence; MRI; Artificial intelligence; TERM ANDROGEN SUPPRESSION; MULTIPARAMETRIC MRI; BIOCHEMICAL RECURRENCE; THERAPY; TUMOR;
D O I
10.1016/j.ejrad.2023.111095
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objective: To evaluate a biparametric MRI (bpMRI)-based artificial intelligence (AI) model for the detection of local prostate cancer (PCa) recurrence in patients with radiotherapy history.Materials and Methods: This study included post-radiotherapy patients undergoing multiparametric MRI and subsequent MRI/US fusion-guided and/or systematic biopsy. Histopathology results were used as ground truth. The recurrent cancer detection sensitivity of a bpMRI-based AI model, which was developed on a large dataset to primarily identify lesions in treatment-naive patients, was compared to a prospective radiologist assessment using the Wald test. Subanalysis was conducted on patients stratified by the treatment modality (external beam radiation treatment [EBRT] and brachytherapy) and the prostate volume quartiles.Results: Of the 62 patients included (median age = 70 years; median PSA = 3.51 ng/ml; median prostate volume = 27.55 ml), 56 recurrent PCa foci were identified within 46 patients. The AI model detected 40 lesions in 35 patients. The AI model performance was lower than the prospective radiology interpretation (Rad) on a patient-(AI: 76.1% vs. Rad: 91.3%, p = 0.02) and lesion-level (AI: 71.4% vs. Rad: 87.5%, p = 0.01). The mean number of false positives per patient was 0.35 (range: 0-2). The AI model performance was higher in EBRT group both on patient-level (EBRT: 81.5% [22/27] vs. brachytherapy: 68.4% [13/19]) and lesion-level (EBRT: 79.4% [27/34] vs. brachytherapy: 59.1% [13/22]). In patients with gland volumes >34 ml (n = 25), detection sensitivities were 100% (11/11) and 94.1% (16/17) on patient-and lesion-level, respectively.Conclusion: The reported bpMRI-based AI model detected the majority of locally recurrent prostate cancer after radiotherapy. Further testing including external validation of this model is warranted prior to clinical implementation.
引用
收藏
页数:11
相关论文
共 37 条
[1]   Multiparametric MRI for detection of radiorecurrent prostate cancer: added value of apparent diffusion coefficient maps and dynamic contrast-enhanced images [J].
Abd-Alazeez, M. ;
Ramachandran, N. ;
Dikaios, N. ;
Ahmed, H. U. ;
Emberton, M. ;
Kirkham, A. ;
Arya, M. ;
Taylor, S. ;
Halligan, S. ;
Punwani, S. .
PROSTATE CANCER AND PROSTATIC DISEASES, 2015, 18 (02) :128-136
[2]   Detection of locally radio-recurrent prostate cancer at multiparametric MRI: Can dynamic contrast-enhanced imaging be omitted? [J].
Alonzo, F. ;
Melodelima, C. ;
Bratan, F. ;
Vitry, T. ;
Crouzet, S. ;
Gelet, A. ;
Rouviere, O. .
DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2016, 97 (04) :433-441
[3]   Current Status of Biparametric MRI in Prostate Cancer Diagnosis: Literature Analysis [J].
Belue, Mason James ;
Yilmaz, Enis Cagatay ;
Daryanani, Asha ;
Turkbey, Baris .
LIFE-BASEL, 2022, 12 (06)
[4]   Comparison of sensitivity and reading time for the use of computer-aided detection (CAD) of pulmonary nodules at MDCT as concurrent or second reader [J].
F. Beyer ;
L. Zierott ;
E. M. Fallenberg ;
K. U. Juergens ;
J. Stoeckel ;
W. Heindel ;
D. Wormanns .
European Radiology, 2007, 17 (11) :2941-2947
[5]   External irradiation with or without long-term androgen suppression for prostate cancer with high metastatic risk: 10-year results of an EORTC randomised study [J].
Bolla, Michel ;
Van Tienhoven, Geertjan ;
Warde, Padraig ;
Dubois, Jean Bernard ;
Mirimanoff, Rene-Olivier ;
Storme, Guy ;
Bernier, Jacques ;
Kuten, Abraham ;
Sternberg, Cora ;
Billiet, Ignace ;
Lopez Torecilla, Jose ;
Pfeffer, Raphael ;
Cutajar, Carmel Lino ;
Van der Kwast, Theodore ;
Collette, Laurence .
LANCET ONCOLOGY, 2010, 11 (11) :1066-1073
[6]   EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer. Part II-2020 Update: Treatment of Relapsing and Metastatic Prostate Cancer [J].
Cornford, Philip ;
van den Bergh, Roderick C. N. ;
Briers, Erik ;
Van den Broeck, Thomas ;
Cumberbatch, Marcus G. ;
De Santis, Maria ;
Fanti, Stefano ;
Fossati, Nicola ;
Gandaglia, Giorgio ;
Gillessen, Silke ;
Grivas, Nikolaos ;
Grummet, Jeremy ;
Henry, Ann M. ;
van der Kwast, Theodorus H. ;
Lam, Thomas B. ;
Lardas, Michael ;
Liew, Matthew ;
Mason, Malcolm D. ;
Moris, Lisa ;
Oprea-Lager, Daniela E. ;
van der Poel, Henk G. ;
Rouviere, Olivier ;
Schoots, Ivo G. ;
Tilki, Derya ;
Wiegel, Thomas ;
Willemse, Peter-Paul M. ;
Mottet, Nicolas .
EUROPEAN UROLOGY, 2021, 79 (02) :263-282
[7]   Multiparametric Prostate MR Imaging with T2-weighted, Diffusion-weighted, and Dynamic Contrast-enhanced Sequences: Are All Pulse Sequences Necessary to Detect Locally Recurrent Prostate Cancer after Radiation Therapy? [J].
Donati, Olivio F. ;
Jung, Sung Il ;
Vargas, Hebert Alberto ;
Gultekin, David H. ;
Zheng, Junting ;
Moskowitz, Chaya S. ;
Hricak, Hedvig ;
Zelefsky, Michael J. ;
Akin, Oguz .
RADIOLOGY, 2013, 268 (02) :440-450
[8]  
Gaur Sonia, 2018, Oncotarget, V9, P33804, DOI 10.18632/oncotarget.26100
[9]   Prostate MR Imaging for Posttreatment Evaluation and Recurrence [J].
Gaur, Sonia ;
Turkbey, Baris .
UROLOGIC CLINICS OF NORTH AMERICA, 2018, 45 (03) :467-+
[10]   Multiparametric magnetic resonance imaging of the prostate with computer-aided detection: experienced observer performance study [J].
Giannini, Valentina ;
Mazzetti, Simone ;
Armando, Enrico ;
Carabalona, Silvia ;
Russo, Filippo ;
Giacobbe, Alessandro ;
Muto, Giovanni ;
Regge, Daniele .
EUROPEAN RADIOLOGY, 2017, 27 (10) :4200-4208