A Comprehensive Comparison of Individual Tree Crown Delineation of Plantations Using UAV-LiDAR Data: A Case Study for Larch (Larix Olgensis) Forests in Northeast China

被引:4
作者
Liu, Xin [1 ]
Zou, Xinyang [1 ]
Hao, Yuanshuo [1 ]
Dong, Lihu [1 ]
机构
[1] Northeast Forestry Univ, Sch Forestry, Key Lab Sustainable Forest Ecosyst Management, Minist Educ, Harbin 150040, Peoples R China
关键词
Crown class; individual tree crown delineation (ITCD); light detection and ranging (LiDAR); sensitivity analysis; unmanned aerial vehicles (UAVs); ALS POINT CLOUDS; STAND CHARACTERISTICS; SEGMENTATION; EXTRACTION; ALGORITHM; CANOPY; PINE; RETRIEVAL; ACCURACY; DENSITY;
D O I
10.1109/JSTARS.2023.3345313
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Individual tree crown delineation (ITCD) employing unmanned aerial vehicle light detection and ranging data can directly obtain high-precision tree-level structural information within a block, with this information being the foundation for monitoring and management of the forest, thus reducing time-consuming labor. Despite the fact that numerous ITCD algorithms have been proposed, there has not yet been a robust and comprehensive comparison of these algorithms in plantations. In this article, we evaluated the performance of seven classic ITCD methods under various stand densities and crown classes and analyzed the parameter sensitivity as well as the correlation of segmentation accuracy with optimal parameters and stand metrics. The results demonstrate that the segmentation and crown description accuracy, stability, and adaptability of the algorithm should be comprehensively considered when choosing an algorithm. The forest characteristics impact the accuracy of the algorithms, and the complexity of the forest canopy structure and omission error of suppressed trees are the key factors impacting ITCD accuracy. Furthermore, this study shows that it is feasible to control the parameters of the algorithm through stand measurement. These results will be helpful in guiding the selection of ITCD methods and will provide support for improving the ITCD algorithm in the future.
引用
收藏
页码:2396 / 2408
页数:13
相关论文
共 82 条
[61]   Individual Tree Crown Segmentation and Crown Width Extraction From a Heightmap Derived From Aerial Laser Scanning Data Using a Deep Learning Framework [J].
Sun, Chenxin ;
Huang, Chengwei ;
Zhang, Huaiqing ;
Chen, Bangqian ;
An, Feng ;
Wang, Liwen ;
Yun, Ting .
FRONTIERS IN PLANT SCIENCE, 2022, 13
[62]  
Sun Y., 2022, Remote Sens., V14
[63]   Segmenting tree crowns from terrestrial and mobile LiDAR data by exploring ecological theories [J].
Tao, Shengli ;
Wu, Fangfang ;
Guo, Qinghua ;
Wang, Yongcai ;
Li, Wenkai ;
Xue, Baolin ;
Hu, Xueyang ;
Li, Peng ;
Tian, Di ;
Li, Chao ;
Yao, Hui ;
Li, Yumei ;
Xu, Guangcai ;
Fang, Jingyun .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 110 :66-76
[64]   Characterizing Forest Succession in Central Ontario using Lidar-derived Indices [J].
van Ewijk, Karin Y. ;
Treitz, Paul M. ;
Scott, Neal A. .
PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2011, 77 (03) :261-269
[65]   Comparative testing of single-tree detection algorithms under different types of forest [J].
Vauhkonen, Jari ;
Ene, Liviu ;
Gupta, Sandeep ;
Heinzel, Johannes ;
Holmgren, Johan ;
Pitkanen, Juho ;
Solberg, Svein ;
Wang, Yunsheng ;
Weinacker, Holger ;
Hauglin, K. Marius ;
Lien, Vegard ;
Packalen, Petteri ;
Gobakken, Terje ;
Koch, Barbara ;
Naesset, Erik ;
Tokola, Timo ;
Maltamo, Matti .
FORESTRY, 2012, 85 (01) :27-40
[66]   Individual tree-crown delineation and treetop detection high-spatial-resolution aerial imagery [J].
Wang, L ;
Gong, P ;
Biging, GS .
PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2004, 70 (03) :351-357
[67]  
Wang M., 2022, Remote Sens., V14
[68]   International Benchmarking of the Individual Tree Detection Methods for Modeling 3-D Canopy Structure for Silviculture and Forest Ecology Using Airborne Laser Scanning [J].
Wang, Yunsheng ;
Hyyppa, Juha ;
Liang, Xinlian ;
Kaartinen, Harri ;
Yu, Xiaowei ;
Lindberg, Eva ;
Holmgren, Johan ;
Qin, Yuchu ;
Mallet, Clement ;
Ferraz, Antonio ;
Torabzadeh, Hossein ;
Morsdorf, Felix ;
Zhu, Lingli ;
Liu, Jingbin ;
Alho, Petteri .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (09) :5011-5027
[69]   3D Segmentation of Trees Through a Flexible Multiclass Graph Cut Algorithm [J].
Williams, Jonathan ;
Schonlieb, Carola-Bibiane ;
Swinfield, Tom ;
Lee, Juheon ;
Cai, Xiaohao ;
Qie, Lan ;
Coomes, David A. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (02) :754-776
[70]   The Influence of Vegetation Characteristics on Individual Tree Segmentation Methods with Airborne LiDAR Data [J].
Yang, Qiuli ;
Su, Yanjun ;
Jin, Shichao ;
Kelly, Maggi ;
Hu, Tianyu ;
Ma, Qin ;
Li, Yumei ;
Song, Shilin ;
Zhang, Jing ;
Xu, Guangcai ;
Wei, Jianxin ;
Guo, Qinghua .
REMOTE SENSING, 2019, 11 (23)