Inferring nonlinear fractional diffusion processes from single trajectories

被引:2
|
作者
Kassel, Johannes A. [1 ]
Walter, Benjamin [2 ]
Kantz, Holger [1 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[2] Imperial Coll London, Dept Math, 180 Queens Gate, London SW7 2AZ, England
来源
NEW JOURNAL OF PHYSICS | 2023年 / 25卷 / 11期
关键词
statistical inference; fractional Brownian motion; nonequilibrium statistical mechanics; maximum likelihood estimation; single-trajectory measurements; time series analysis; anomalous diffusion; ONSAGER-MACHLUP FUNCTION; TEMPERATURE; DYNAMICS; SERIES;
D O I
10.1088/1367-2630/ad091e
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a method to infer the arbitrary space-dependent drift and diffusion of a nonlinear stochastic model driven by multiplicative fractional Gaussian noise from a single trajectory. Our method, fractional Onsager-Machlup optimisation (fOMo), introduces a maximum likelihood estimator by minimising a field-theoretic action which we construct from the observed time series. We successfully test fOMo for a wide range of Hurst exponents using artificial data with strong nonlinearities, and apply it to a data set of daily mean temperatures. We further highlight the significant systematic estimation errors when ignoring non-Markovianity, underlining the need for nonlinear fractional inference methods when studying real-world long-range (anti-)correlated systems.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Stochastic processes crossing from ballistic to fractional diffusion with memory: Exact results
    Ilyin, Valery
    Procaccia, Itamar
    Zagorodny, Anatoly
    PHYSICAL REVIEW E, 2010, 81 (03):
  • [2] Stochastic processes crossing from ballistic to fractional diffusion with memory: exact results
    Ilyin, V.
    Procaccia, I.
    Zagorodny, A.
    CONDENSED MATTER PHYSICS, 2010, 13 (02)
  • [3] ANALYSIS OF SINGLE PARTICLE TRAJECTORIES: FROM NORMAL TO ANOMALOUS DIFFUSION
    Metzler, R.
    Tejedor, V.
    Jeon, J. -H.
    He, Y.
    Deng, W. H.
    Burov, S.
    Barkai, E.
    ACTA PHYSICA POLONICA B, 2009, 40 (05): : 1315 - 1331
  • [4] Fractional nonlinear diffusion equation, solutions and anomalous diffusion
    Silva, A. T.
    Lenzi, E. K.
    Evangelista, L. R.
    Lenzi, M. K.
    da Silva, L. R.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 375 (01) : 65 - 71
  • [5] Inferring diffusion in single live cells at the single-molecule level
    Robson, Alex
    Burrage, Kevin
    Leake, Mark C.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2013, 368 (1611)
  • [6] Solutions for a fractional nonlinear diffusion equation with external force and absorbent term
    Lenzi, E. K.
    Lenzi, M. K.
    Evangelista, L. R.
    Malacarne, L. C.
    Mendes, R. S.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
  • [7] Fractional and nonlinear diffusion equation: additional results
    da Silva, LR
    Lucena, LS
    Lenzi, EK
    Mendes, RS
    Fa, KS
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 344 (3-4) : 671 - 676
  • [8] Inferring Active Noise Characteristics from the Paired Observations of Anomalous Diffusion
    Saito, Takuya
    Sakaue, Takahiro
    POLYMERS, 2019, 11 (01)
  • [9] A compressed sensing approach to interpolation of fractional Brownian trajectories for a single particle tracking experiment
    Muszkieta, Monika
    Janczura, Joanna
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 446
  • [10] Machine-Learning Solutions for the Analysis of Single-Particle Diffusion Trajectories
    Seckler, Henrik
    Szwabinski, Janusz
    Metzler, Ralf
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (35): : 7910 - 7923