Applications of Machine Learning to Diagnosis of Parkinson's Disease

被引:4
作者
Lai, Hong [1 ,2 ]
Li, Xu-Ying [1 ]
Xu, Fanxi [1 ]
Zhu, Junge [1 ]
Li, Xian [1 ]
Song, Yang [1 ]
Wang, Xianlin [1 ]
Wang, Zhanjun [1 ]
Wang, Chaodong [1 ]
机构
[1] Capital Med Univ, Xuanwu Hosp, Natl Clin Res Ctr Geriatr Dis, Dept Neurol, Beijing 100053, Peoples R China
[2] Gannan Med Univ, Affiliated Hosp 1, Dept Neurol, Ganzhou 341000, Peoples R China
基金
中国国家自然科学基金;
关键词
Parkinson's disease; external validation; machine learning; support vector machine; diagnostic accuracy; EXCESSIVE DAYTIME SLEEPINESS; RISK-FACTORS; NONMOTOR FEATURES; IDENTIFICATION; METAANALYSIS; EPIDEMIOLOGY; ASSOCIATION; DEPRESSION; VARIANTS; PREMOTOR;
D O I
10.3390/brainsci13111546
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: Accurate diagnosis of Parkinson's disease (PD) is challenging due to its diverse manifestations. Machine learning (ML) algorithms can improve diagnostic precision, but their generalizability across medical centers in China is underexplored. Objective: To assess the accuracy of an ML algorithm for PD diagnosis, trained and tested on data from different medical centers in China. Methods: A total of 1656 participants were included, with 1028 from Beijing (training set) and 628 from Fuzhou (external validation set). Models were trained using the least absolute shrinkage and selection operator-logistic regression (LASSO-LR), decision tree (DT), random forest (RF), eXtreme gradient boosting (XGboost), support vector machine (SVM), and k-nearest neighbor (KNN) techniques. Hyperparameters were optimized using five-fold cross-validation and grid search techniques. Model performance was evaluated using the area under the curve (AUC) of the receiver operating characteristic (ROC) curve, accuracy, sensitivity (recall), specificity, precision, and F1 score. Variable importance was assessed for all models. Results: SVM demonstrated the best differentiation between healthy controls (HCs) and PD patients (AUC: 0.928, 95% CI: 0.908-0.947; accuracy: 0.844, 95% CI: 0.814-0.871; sensitivity: 0.826, 95% CI: 0.786-0.866; specificity: 0.861, 95% CI: 0.820-0.898; precision: 0.849, 95% CI: 0.807-0.891; F1 score: 0.837, 95% CI: 0.803-0.868) in the validation set. Constipation, olfactory decline, and daytime somnolence significantly influenced predictability. Conclusion: We identified multiple pivotal variables and SVM as a precise and clinician-friendly ML algorithm for prediction of PD in Chinese patients.
引用
收藏
页数:14
相关论文
共 60 条
[41]   Exposure to pesticides or solvents and risk of Parkinson disease [J].
Pezzoli, Gianni ;
Cereda, Emanuele .
NEUROLOGY, 2013, 80 (22) :2035-2041
[42]   Idiopathic hyposmia as a preclinical sign of Parkinson's disease [J].
Ponsen, MM ;
Stoffers, D ;
Booij, J ;
van Eck-Smit, BLF ;
Wolters, EC ;
Berendse, HW .
ANNALS OF NEUROLOGY, 2004, 56 (02) :173-181
[43]   Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study [J].
Postuma, Ronald B. ;
Iranzo, Alex ;
Hu, Michele ;
Hoegl, Birgit ;
Boeve, Bradley F. ;
Manni, Raffaele ;
Oertel, Wolfgang H. ;
Arnulf, Isabelle ;
Ferini-Strambi, Luigi ;
Puligheddu, Monica ;
Antelmi, Elena ;
De Cock, Valerie Cochen ;
Arnaldi, Dario ;
Mollenhauer, Brit ;
Videnovic, Aleksandar ;
Sonka, Karel ;
Jung, Ki-Young ;
Kunz, Dieter ;
Dauvilliers, Yves ;
Provini, Federica ;
Lewis, Simon J. ;
Buskova, Jitka ;
Pavlova, Milena ;
Heidbreder, Anna ;
Montplaisir, Jacques Y. ;
Santamaria, Joan ;
Barber, Thomas R. ;
Stefani, Ambra ;
St Louis, Erik K. ;
Terzaghi, Michele ;
Janzen, Annette ;
Leu-Semenescu, Smandra ;
Plazzi, Guiseppe ;
Nobili, Flavio ;
Sixel-Doering, Friederike ;
Dusek, Petr ;
Bes, Frederik ;
Cortelli, Pietro ;
Martens, Kaylena Ehgoetz ;
Gagnon, Jean-Francois ;
Gaig, Carles ;
Zucconi, Marco ;
Trenkwalder, Claudia ;
Gan-Or, Ziv ;
Lo, Christine ;
Rolinski, Michal ;
Mahlknecht, Philip ;
Holzknecht, Evi ;
Boeve, Angel R. ;
Teigen, Luke N. .
BRAIN, 2019, 142 :744-759
[44]   MDS clinical diagnostic criteria for Parkinson's disease [J].
Postuma, Ronald B. ;
Berg, Daniela ;
Stern, Matthew ;
Poewe, Werner ;
Olanow, C. Warren ;
Oertel, Wolfgang ;
Obeso, Jose ;
Marek, Kenneth ;
Litvan, Irene ;
Lang, Anthony E. ;
Halliday, Glenda ;
Goetz, Christopher G. ;
Gasser, Thomas ;
Dubois, Bruno ;
Chan, Piu ;
Bloem, Bastiaan R. ;
Adler, Charles H. ;
Deuschl, Guenther .
MOVEMENT DISORDERS, 2015, 30 (12) :1591-1599
[45]   High-Accuracy Detection of Early Parkinson's Disease through Multimodal Features and Machine Learning [J].
Prashanth, R. ;
Roy, Sumantra Dutta ;
Mandal, Pravat K. ;
Ghosh, Shantanu .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2016, 90 :13-21
[46]   Premotor Diagnosis of Parkinson's Disease [J].
Reichmann, Heinz .
NEUROSCIENCE BULLETIN, 2017, 33 (05) :526-534
[47]   Familial aggregation of Parkinson's disease: The Mayo Clinic family study [J].
Rocca, WA ;
McDonnell, SK ;
Strain, KJ ;
Bower, JH ;
Ahlskog, JE ;
Elbaz, A ;
Schaid, DJ ;
Maraganore, DM .
ANNALS OF NEUROLOGY, 2004, 56 (04) :495-502
[48]   Increased risk of Parkinson's disease after depression - A retrospective cohort study [J].
Schuurman, AG ;
van den Akker, M ;
Ensinck, KTJL ;
Metsemakers, JFM ;
Knottnerus, JA ;
Leentjens, AFG ;
Buntinx, F .
NEUROLOGY, 2002, 58 (10) :1501-1504
[49]   Predictive markers for Parkinson's disease using deep neural nets on neuromelanin sensitive MRI [J].
Shinde, Sumeet ;
Prasad, Shweta ;
Saboo, Yash ;
Kaushick, Rishabh ;
Saini, Jitender ;
Pal, Pramod Kumar ;
Ingalhalikar, Madhura .
NEUROIMAGE-CLINICAL, 2019, 22
[50]   An Integrative Nomogram for Identifying Early-Stage Parkinson's Disease Using Non-motor Symptoms and White Matter-Based Radiomics Biomarkers From Whole-Brain MRI [J].
Shu, Zhenyu ;
Pang, Peipei ;
Wu, Xiao ;
Cui, Sijia ;
Xu, Yuyun ;
Zhang, Minming .
FRONTIERS IN AGING NEUROSCIENCE, 2020, 12