Machine learning-based models for the prediction of breast cancer recurrence risk

被引:25
|
作者
Zuo, Duo [1 ,2 ,3 ,4 ,5 ]
Yang, Lexin [1 ,2 ,3 ,4 ,5 ]
Jin, Yu [1 ,6 ]
Qi, Huan [7 ]
Liu, Yahui [1 ,2 ,3 ,4 ,5 ]
Ren, Li [1 ,2 ,3 ,4 ,5 ]
机构
[1] Tianjin Med Univ, Dept Clin Lab, Canc Inst & Hosp, Tianjin 300060, Peoples R China
[2] Natl Clin Res Ctr Canc, Tianjin 300060, Peoples R China
[3] Tianjins Clin Res Ctr Canc, Tianjin 300060, Peoples R China
[4] Key Lab Canc Prevent & Therapy, Tianjin 300060, Peoples R China
[5] Tianjin Med Univ, Key Lab Breast Canc Prevent & Therapy, Minist Educ, Tianjin 300060, Peoples R China
[6] Tongji Univ, Canc Ctr, Shanghai Peoples Hosp 10, Sch Med, Shanghai 200072, Peoples R China
[7] China Mobile Grp Tianjin Co Ltd, Tianjin 300130, Peoples R China
关键词
Breast cancer; Machine learning; Artificial intelligence; Disease recurrence; Prediction model; PLASMA-FIBRINOGEN LEVEL; ARTIFICIAL-INTELLIGENCE; HEALTH-CARE; FOLLOW-UP; SURVIVAL; OVARIAN; CA125; CLASSIFICATION; PROGNOSIS; INDICATOR;
D O I
10.1186/s12911-023-02377-z
中图分类号
R-058 [];
学科分类号
摘要
Breast cancer is the most common malignancy diagnosed in women worldwide. The prevalence and incidence of breast cancer is increasing every year; therefore, early diagnosis along with suitable relapse detection is an important strategy for prognosis improvement. This study aimed to compare different machine algorithms to select the best model for predicting breast cancer recurrence. The prediction model was developed by using eleven different machine learning (ML) algorithms, including logistic regression (LR), random forest (RF), support vector classification (SVC), extreme gradient boosting (XGBoost), gradient boosting decision tree (GBDT), decision tree, multilayer perceptron (MLP), linear discriminant analysis (LDA), adaptive boosting (AdaBoost), Gaussian naive Bayes (GaussianNB), and light gradient boosting machine (LightGBM), to predict breast cancer recurrence. The area under the curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and F1 score were used to evaluate the performance of the prognostic model. Based on performance, the optimal ML was selected, and feature importance was ranked by Shapley Additive Explanation (SHAP) values. Compared to the other 10 algorithms, the results showed that the AdaBoost algorithm had the best prediction performance for successfully predicting breast cancer recurrence and was adopted in the establishment of the prediction model. Moreover, CA125, CEA, Fbg, and tumor diameter were found to be the most important features in our dataset to predict breast cancer recurrence. More importantly, our study is the first to use the SHAP method to improve the interpretability of clinicians to predict the recurrence model of breast cancer based on the AdaBoost algorithm. The AdaBoost algorithm offers a clinical decision support model and successfully identifies the recurrence of breast cancer.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Machine learning-based models for the prediction of breast cancer recurrence risk
    Duo Zuo
    Lexin Yang
    Yu Jin
    Huan Qi
    Yahui Liu
    Li Ren
    BMC Medical Informatics and Decision Making, 23
  • [2] Machine learning-based radiomics models for prediction of locoregional recurrence in patients with breast cancer
    Lee, Joongyo
    Yoo, Sang Kyun
    Kim, Kangpyo
    Lee, Byung Min
    Park, Vivian Youngjean
    Kim, Jin Sung
    Kim, Yong Bae
    ONCOLOGY LETTERS, 2023, 26 (04)
  • [3] A Machine Learning-Based Framework for the Prediction of Cervical Cancer Risk in Women
    Kaushik, Keshav
    Bhardwaj, Akashdeep
    Bharany, Salil
    Alsharabi, Naif
    Rehman, Ateeq Ur
    Eldin, Elsayed Tag
    Ghamry, Nivin A.
    SUSTAINABILITY, 2022, 14 (19)
  • [4] An Assessment of the Predictive Performance of Current Machine Learning-Based Breast Cancer Risk Prediction Models: Systematic Review
    Gao, Ying
    Li, Shu
    Jin, Yujing
    Zhou, Lengxiao
    Sun, Shaomei
    Xu, Xiaoqian
    Li, Shuqian
    Yang, Hongxi
    Zhang, Qing
    Wang, Yaogang
    JMIR PUBLIC HEALTH AND SURVEILLANCE, 2022, 8 (12):
  • [5] Machine learning-based prediction models for accidental hypothermia patients
    Okada, Yohei
    Matsuyama, Tasuku
    Morita, Sachiko
    Ehara, Naoki
    Miyamae, Nobuhiro
    Jo, Takaaki
    Sumida, Yasuyuki
    Okada, Nobunaga
    Watanabe, Makoto
    Nozawa, Masahiro
    Tsuruoka, Ayumu
    Fujimoto, Yoshihiro
    Okumura, Yoshiki
    Kitamura, Tetsuhisa
    Iiduka, Ryoji
    Ohtsuru, Shigeru
    JOURNAL OF INTENSIVE CARE, 2021, 9 (01)
  • [6] Deep Learning-Based Prediction Model for Breast Cancer Recurrence Using Adjuvant Breast Cancer Cohort in Tertiary Cancer Center Registry
    Kim, Ji-Yeon
    Lee, Yong Seok
    Yu, Jonghan
    Park, Youngmin
    Lee, Se Kyung
    Lee, Minyoung
    Lee, Jeong Eon
    Kim, Seok Won
    Nam, Seok Jin
    Park, Yeon Hee
    Ahn, Jin Seok
    Kang, Mira
    Im, Young-Hyuck
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [7] Machine learning-based prediction of survival prognosis in cervical cancer
    Ding, Dongyan
    Lang, Tingyuan
    Zou, Dongling
    Tan, Jiawei
    Chen, Jia
    Zhou, Lei
    Wang, Dong
    Li, Rong
    Li, Yunzhe
    Liu, Jingshu
    Ma, Cui
    Zhou, Qi
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [8] Comparison of Machine Learning Models for Classification of Breast Cancer Risk Based on Clinical Data
    Rafiepoor, Haniyeh
    Ghorbankhanloo, Alireza
    Zendehdel, Kazem
    Madar, Zahra Zangeneh
    Hajivalizadeh, Sepideh
    Hasani, Zeinab
    Sarmadi, Ali
    Amanpour-Gharaei, Behzad
    Barati, Mohammad Amin
    Saadat, Mozafar
    Sadegh-Zadeh, Seyed-Ali
    Amanpour, Saeid
    CANCER REPORTS, 2025, 8 (04)
  • [9] Mortality Prediction Modeling for Patients with Breast Cancer Based on Explainable Machine Learning
    Park, Sang Won
    Park, Ye-Lin
    Lee, Eun-Gyeong
    Chae, Heejung
    Park, Phillip
    Choi, Dong-Woo
    Choi, Yeon Ho
    Hwang, Juyeon
    Ahn, Seohyun
    Kim, Keunkyun
    Kim, Woo Jin
    Kong, Sun-Young
    Jung, So-Youn
    Kim, Hyun-Jin
    CANCERS, 2024, 16 (22)
  • [10] Machine learning-based prediction model for distant metastasis of breast cancer
    Duan, Hao
    Zhang, Yu
    Qiu, Haoye
    Fu, Xiuhao
    Liu, Chunling
    Zang, Xiaofeng
    Xu, Anqi
    Wu, Ziyue
    Li, Xingfeng
    Zhang, Qingchen
    Zhang, Zilong
    Cui, Feifei
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 169