Partial Regularity of Suitable Weak Solutions of the Model Arising in Amorphous Molecular Beam Epitaxy

被引:1
作者
Wang, Yan Qing [1 ]
Huang, Yi Ke [1 ]
Wu, Gang [2 ]
Zhou, Dao Guo [3 ]
机构
[1] Zhengzhou Univ Light Ind, Coll Math & Informat Sci, Zhengzhou 450002, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[3] Hangzhou Normal Univ, Sch Math, Hangzhou 311121, Peoples R China
关键词
Surface growth model; modified Navier-Stokes equations; partial regularity; Hausdorff dimension; PARABOLIC-SYSTEMS; GLOBAL-SOLUTIONS; GROWTH; PROOF; CONSERVATION; EXISTENCE; EQUATIONS;
D O I
10.1007/s10114-023-2458-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the precise relationship between the Hausdorff dimen-sion of possible singular point set S of suitable weak solutions and the parameter alpha in the nonlinear term in the following parabolic equation h(t) + h(xxxx) + partial derivative(xx)|h(x)|(alpha) = f. It is shown that when 5/3 <= alpha < 7/3, the 3 alpha-5/alpha-1-dimensional parabolic Hausdorff measure of S is zero, which generalizes the recent corresponding work of Oz & aacute;nski and Robinson in [SIAM J. Math. Anal., 51, 228-255 (2019)] for alpha = 2 and f = 0. The same result is valid for a 3D modified Navier-Stokes system.
引用
收藏
页码:2219 / 2246
页数:28
相关论文
共 45 条
  • [1] Aramaki J, 2016, ELECTRON J DIFFER EQ
  • [2] Dynamical properties of a nonlinear Kuramoto-Sivashinsky growth equation
    Benlahsen, Mohammed
    Bognar, Gabriella
    Csati, Zoltan
    Guedda, Mohammed
    Hriczo, Krisztian
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (03) : 3419 - 3427
  • [3] Local existence and uniqueness in the largest critical space for a surface growth model
    Bloemker, Dirk
    Romito, Marco
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2012, 19 (03): : 365 - 381
  • [4] Blömker D, 2009, DYNAM PART DIFFER EQ, V6, P227
  • [5] MARKOVIANITY AND ERGODICITY FOR A SURFACE GROWTH PDE
    Bloemker, Dirk
    Flandoli, Franco
    Romito, Marco
    [J]. ANNALS OF PROBABILITY, 2009, 37 (01) : 275 - 313
  • [6] Thin-film-growth models:: roughness and correlation functions
    Blömker, D
    Gugg, C
    Raible, M
    [J]. EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2002, 13 : 385 - 402
  • [7] Bögelein V, 2011, PUBL MAT, V55, P201
  • [8] Brezis H., 2011, FUNCTIONAL ANAL SOBO, DOI DOI 10.1007/978-0-387-70914-7
  • [9] On regularity properties of a surface growth model
    Burczak, Jan
    Ozanski, Wojciech S.
    Seregin, Gregory
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2021, 151 (06) : 1869 - 1892
  • [10] PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS
    CAFFARELLI, L
    KOHN, R
    NIRENBERG, L
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) : 771 - 831