Morphological Structure and Physiological and Biochemical Responses to Drought Stress of Iris japonica

被引:6
|
作者
Yu, Xiaofang [1 ]
Liu, Yujia [1 ]
Cao, Panpan [1 ]
Zeng, Xiaoxuan [1 ]
Xu, Bin [1 ]
Luo, Fuwen [1 ]
Yang, Xuan [1 ]
Wang, Xiantong [1 ]
Wang, Xiaoyu [1 ]
Xiao, Xue [2 ]
Yang, Lijuan [1 ]
Lei, Ting [1 ]
机构
[1] Sichuan Agr Univ, Coll Landscape Architecture, Chengdu 611130, Peoples R China
[2] Sichuan Agr Univ, Triticeae Res Inst, Chengdu 611130, Peoples R China
来源
PLANTS-BASEL | 2023年 / 12卷 / 21期
基金
中国国家自然科学基金;
关键词
biochemical indicators; cellular homeostasis; anatomical structure; physiological properties; antioxidant system; TOLERANCE; TRANSPORT; REDUCTASE; ENZYME; LEAVES; OXYGEN; PLANTS;
D O I
10.3390/plants12213729
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Drought is among the most important abiotic stresses on plants, so research on the physiological regulation mechanisms of plants under drought stress can critically increase the economic and ecological value of plants in arid regions. In this study, the effects of drought stress on the growth status and biochemical indicators of Iris japonica were explored. Under drought stress, the root system, leaves, rhizomes, and terrestrial stems of plants were sequentially affected; the root system was sparse and slender; and the leaves lost their luster and gradually wilted. Among the physiological changes, the increase in the proline and soluble protein content of Iris japonica enhanced the cellular osmotic pressure and reduced the water loss. In anatomical structures, I. japonica chloroplasts were deformed after drought treatment, whereas the anatomical structures of roots did not substantially change. Plant antioxidant systems play an important role in maintaining cellular homeostasis; but, as drought stress intensified, the soluble sugar content of terrestrial stems was reduced by 55%, and the ascorbate peroxidase, glutathione reductase, and monodehydroascorbate reductase (MDHAR) activities of leaves and the MDHAR activity of roots were reduced by 29%, 40%, 22%, and 77%, respectively. Overall, I. japonica was resistant to 63 days of severe drought stress and resisted drought through various physiological responses. These findings provide a basis for the application of I. japonica in water-scarce areas.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Morphological, Physiological, and Biochemical Responses of Zinnia to Drought Stress
    Toscano, Stefania
    Romano, Daniela
    HORTICULTURAE, 2021, 7 (10)
  • [2] Morphological, physiological and biochemical responses of plants to drought stress
    Anjum, Shakeel Ahmad
    Xie, Xiao-yu
    Wang, Long-chang
    Saleem, Muhammad Farrukh
    Man, Chen
    Lei, Wang
    AFRICAN JOURNAL OF AGRICULTURAL RESEARCH, 2011, 6 (09): : 2026 - 2032
  • [3] Morphological, biochemical, and physiological responses of canola cultivars to drought stress
    B. Kazemi Oskuei
    A. Bandehagh
    D. Farajzadeh
    B. Asgari Lajayer
    V. D. Rajput
    T. Astatkie
    International Journal of Environmental Science and Technology, 2023, 20 : 13551 - 13560
  • [4] Morphological, biochemical, and physiological responses of canola cultivars to drought stress
    Oskuei, B. Kazemi
    Bandehagh, A.
    Farajzadeh, D.
    Lajayer, B. Asgari
    Rajput, V. D.
    Astatkie, T.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2023, 20 (12) : 13551 - 13560
  • [5] Physiological and biochemical responses of sorghum to drought stress
    Goche, T.
    Chivasa, S.
    Ngara, R.
    SOUTH AFRICAN JOURNAL OF BOTANY, 2017, 109 : 336 - 336
  • [6] Physiological and Biochemical Responses of Medicagotruncatula to Drought Stress
    Hegab, M. M.
    EGYPTIAN JOURNAL OF BOTANY, 2016, 56 (03): : 895 - 912
  • [7] Physiological and biochemical responses of almond rootstocks to drought stress
    Yildirim, Adnan Nurhan
    San, Bekir
    Yildirim, Fatma
    Celik, Civan
    Bayar, Berna
    Karakurt, Yasar
    TURKISH JOURNAL OF AGRICULTURE AND FORESTRY, 2021, 45 (04) : 522 - 532
  • [8] Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populus przewalskii
    Lei, Yanbao
    Yin, Chunying
    Li, Chunyang
    PHYSIOLOGIA PLANTARUM, 2006, 127 (02) : 182 - 191
  • [9] A meta-analysis on morphological, physiological and biochemical responses of plants with PGPR inoculation under drought stress
    Zhao, Xiaowen
    Yuan, Xiaomai
    Xing, Yuanjun
    Dao, Jicao
    Zhao, Deqiang
    Li, Yuze
    Li, Weiwei
    Wang, Ziting
    PLANT CELL AND ENVIRONMENT, 2023, 46 (01): : 199 - 214
  • [10] Morphological, physiological and biochemical responses to combined cadmium and drought stress in radish (Raphanus sativus L.)
    Gamze Yildiz Tuver
    Melek Ekinci
    Ertan Yildirim
    Rendiconti Lincei. Scienze Fisiche e Naturali, 2022, 33 : 419 - 429