Structure-informed clustering for population stratification in association studies

被引:2
作者
Bose, Aritra [1 ]
Burch, Myson [1 ,2 ]
Chowdhury, Agniva [3 ]
Paschou, Peristera [4 ]
Drineas, Petros [2 ]
机构
[1] IBM TJ Watson Res Ctr, Computat Genom, Yorktown Hts, NY USA
[2] Purdue Univ, Dept Comp Sci, W Lafayette, IN 47907 USA
[3] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN USA
[4] Purdue Univ, Dept Biol Sci, W Lafayette, IN USA
关键词
Association studies; Populations structure; Clustering; LINKAGE-DISEQUILIBRIUM; HERITABILITY; SELECTION;
D O I
10.1186/s12859-023-05511-w
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundIdentifying variants associated with complex traits is a challenging task in genetic association studies due to linkage disequilibrium (LD) between genetic variants and population stratification, unrelated to the disease risk. Existing methods of population structure correction use principal component analysis or linear mixed models with a random effect when modeling associations between a trait of interest and genetic markers. However, due to stringent significance thresholds and latent interactions between the markers, these methods often fail to detect genuinely associated variants.ResultsTo overcome this, we propose CluStrat, which corrects for complex arbitrarily structured populations while leveraging the linkage disequilibrium induced distances between genetic markers. It performs an agglomerative hierarchical clustering using the Mahalanobis distance covariance matrix of the markers. In simulation studies, we show that our method outperforms existing methods in detecting true causal variants. Applying CluStrat on WTCCC2 and UK Biobank cohorts, we found biologically relevant associations in Schizophrenia and Myocardial Infarction. CluStrat was also able to correct for population structure in polygenic adaptation of height in Europeans.ConclusionsCluStrat highlights the advantages of biologically relevant distance metrics, such as the Mahalanobis distance, which captures the cryptic interactions within populations in the presence of LD better than the Euclidean distance.
引用
收藏
页数:13
相关论文
共 41 条
[11]   Genomic control for association studies [J].
Devlin, B ;
Roeder, K .
BIOMETRICS, 1999, 55 (04) :997-1004
[12]  
Dhalla N, 2010, Pharmaceuticals (Basel)
[13]   Detection of human adaptation during the past 2000 years [J].
Field, Yair ;
Boyle, Evan A. ;
Telis, Natalie ;
Gao, Ziyue ;
Gaulton, Kyle J. ;
Golan, David ;
Yengo, Loic ;
Rocheleau, Ghislain ;
Froguel, Philippe ;
McCarthy, Mark I. ;
Pritchard, Jonathan K. .
SCIENCE, 2016, 354 (6313) :760-764
[14]  
Goudarzi M, 2019, ELIFE, V8, DOI [10.7554/eLife.40815, 10.7554/eLife.39725]
[15]  
Hu C, 2022, Aging Dis.
[16]  
Jiang L, 2021, Nat Genet
[17]   The mutational constraint spectrum quantified from variation in 141,456 humans [J].
Karczewski, Konrad J. ;
Francioli, Laurent C. ;
Tiao, Grace ;
Cummings, Beryl B. ;
Alfoldi, Jessica ;
Wang, Qingbo ;
Collins, Ryan L. ;
Laricchia, Kristen M. ;
Ganna, Andrea ;
Birnbaum, Daniel P. ;
Gauthier, Laura D. ;
Brand, Harrison ;
Solomonson, Matthew ;
Watts, Nicholas A. ;
Rhodes, Daniel ;
Singer-Berk, Moriel ;
England, Eleina M. ;
Seaby, Eleanor G. ;
Kosmicki, Jack A. ;
Walters, Raymond K. ;
Tashman, Katherine ;
Farjoun, Yossi ;
Banks, Eric ;
Poterba, Timothy ;
Wang, Arcturus ;
Seed, Cotton ;
Whiffin, Nicola ;
Chong, Jessica X. ;
Samocha, Kaitlin E. ;
Pierce-Hoffman, Emma ;
Zappala, Zachary ;
O'Donnell-Luria, Anne H. ;
Minikel, Eric Vallabh ;
Weisburd, Ben ;
Lek, Monkol ;
Ware, James S. ;
Vittal, Christopher ;
Armean, Irina M. ;
Bergelson, Louis ;
Cibulskis, Kristian ;
Connolly, Kristen M. ;
Covarrubias, Miguel ;
Donnelly, Stacey ;
Ferriera, Steven ;
Gabriel, Stacey ;
Gentry, Jeff ;
Gupta, Namrata ;
Jeandet, Thibault ;
Kaplan, Diane ;
Llanwarne, Christopher .
NATURE, 2020, 581 (7809) :434-+
[18]  
Lawson DJ, 2020, HUM GENET, V139, P23, DOI 10.1007/s00439-019-02014-8
[19]   Efficient Bayesian mixed-model analysis increases association power in large cohorts [J].
Loh, Po-Ru ;
Tucker, George ;
Bulik-Sullivan, Brendan K. ;
Vilhjalmsson, Bjarni J. ;
Finucane, Hilary K. ;
Salem, Rany M. ;
Chasman, Daniel I. ;
Ridker, Paul M. ;
Neale, Benjamin M. ;
Berger, Bonnie ;
Patterson, Nick ;
Price, Alkes L. .
NATURE GENETICS, 2015, 47 (03) :284-+
[20]  
Ma R., 2019, The mahalanobis kernel for heritability estimation in genome-wide association studies: fixed-effects and random-effects methods, DOI DOI 10.48550/ARXIV.1901.02936