NaBr-Assisted Sintering of Na3Zr2Si2PO12 Ceramic Electrolyte Stabilizes a Rechargeable Solid-state Sodium Metal Battery

被引:13
作者
Li, Yang [1 ,2 ]
Sun, Zheng [1 ]
Yuan, Xuanyi [3 ]
Jin, Haibo [1 ]
Zhao, Yongjie [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Key Lab Construct Tailorable Adv Funct Mat, Beijing 100081, Peoples R China
[2] Yangtze Delta Reg Acad, Beijing Inst Technol, Jiaxing 314000, Peoples R China
[3] Renmin Univ China, Dept Phys, Beijing Key Lab Optoelect Funct Mat & Micronano De, Beijing 100872, Peoples R China
基金
中国国家自然科学基金;
关键词
NASICON; NaBr; microstructure; ionicconductivity; solid-state sodium metal battery; ION CONDUCTIVITY; CATHODE;
D O I
10.1021/acsami.3c13483
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Solid-state metal batteries with nonflammable solid-state electrolytes are regarded as the next generation of energy storage technology on account of their high safety and energy density. However, as for most solid electrolytes, low room temperature ionic conductivity and interfacial issues hinder their practical application. In this work, Na super ionic conductor (NASICON)-type Na3Zr2Si2PO12 (NZSP) electrolytes with improved ionic conductivity are synthesized by the NaBr-assisted sintering method. The effects of the NaBr sintering aid on the crystalline phase, microstructure, densification degree, and electrical performance as well as the electrochemical performances of the NZSP ceramic electrolyte are investigated in detail. Specifically, the NZSP-7%NaBr-1150 ceramic electrolyte has an ionic conductivity of 1.2 x 10(-3) S cm(-1) (at 25 degrees C) together with an activation energy of 0.28 eV. A low interfacial resistance of 35 Omega cm(2) is achieved with the Na/NZSP-7%NaBr-1150 interface. Furthermore, the Na/NZSP-7%NaBr-1150/Na3V2(PO4)(3) battery manifests excellent cycling stability with a capacity retention of 98% after 400 cycles at 1 C and 25 degrees C.
引用
收藏
页码:49321 / 49328
页数:8
相关论文
共 35 条
[1]   A wide-ranging review on Nasicon type materials [J].
Anantharamulu, N. ;
Rao, K. Koteswara ;
Rambabu, G. ;
Kumar, B. Vijaya ;
Radha, Velchuri ;
Vithal, M. .
JOURNAL OF MATERIALS SCIENCE, 2011, 46 (09) :2821-2837
[2]   Bi2O3-Assisted Sintering of Na3Zr2Si2PO12 Electrolyte for Solid-State Sodium Metal Batteries [J].
Cen, Shangxu ;
Mei, Wentao ;
Xing, Xiangyuan ;
Zeng, Yiwei ;
Mao, Zhiyong ;
Wang, Dajian ;
Chen, Jingjing ;
Dong, Chenlong .
COATINGS, 2022, 12 (11)
[3]   Influence of LiBF4 sintering aid on the microstructure and conductivity of LATP solid electrolyte [J].
Dai, Lijing ;
Wang, Jing ;
Shi, Zhongxiang ;
Yu, Lina ;
Shi, Jun .
CERAMICS INTERNATIONAL, 2021, 47 (08) :11662-11667
[4]   Fundamentals of inorganic solid-state electrolytes for batteries [J].
Famprikis, Theodosios ;
Canepa, Pieremanuele ;
Dawson, James A. ;
Islam, M. Saiful ;
Masquelier, Christian .
NATURE MATERIALS, 2019, 18 (12) :1278-1291
[5]   Processing and electrical properties of NASICON prepared from yttria-doped zirconia precursors [J].
Fuentes, RO ;
Figueiredo, FM ;
Marques, FMB ;
Franco, JI .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2001, 21 (06) :737-743
[6]   CRYSTAL-STRUCTURES AND CRYSTAL-CHEMISTRY IN SYSTEM NA1+XZR2SIXP3-XO12 [J].
HONG, HYP .
MATERIALS RESEARCH BULLETIN, 1976, 11 (02) :173-182
[7]   Sodium-ion batteries: present and future [J].
Hwang, Jang-Yeon ;
Myung, Seung-Taek ;
Sun, Yang-Kook .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (12) :3529-3614
[8]   Synthesis and Na+ Ion Conductivity of Stoichiometric Na3Zr2Si2PO12 by Liquid-Phase Sintering with NaPO3 Glass [J].
Ji, Yongzheng ;
Honma, Tsuyoshi ;
Komatsu, Takayuki .
MATERIALS, 2021, 14 (14)
[9]   Atomic Structure and Kinetics of NASICON NaxV2(PO4)3 Cathode for Sodium-Ion Batteries [J].
Jian, Zelang ;
Yuan, Chenchen ;
Han, Wenze ;
Lu, Xia ;
Gu, Lin ;
Xi, Xuekui ;
Hu, Yong-Sheng ;
Li, Hong ;
Chen, Wen ;
Chen, Dongfeng ;
Ikuhara, Yuichi ;
Chen, Liquan .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (27) :4265-4272
[10]   Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room-Temperature Sodium-Ion Batteries [J].
Jian, Zelang ;
Han, Wenze ;
Lu, Xia ;
Yang, Huaixin ;
Hu, Yong-Sheng ;
Zhou, Jing ;
Zhou, Zhibin ;
Li, Jianqi ;
Chen, Wen ;
Chen, Dongfeng ;
Chen, Liquan .
ADVANCED ENERGY MATERIALS, 2013, 3 (02) :156-160