Amorphous TiO2 shells: an Essential Elastic Buffer Layer for High-Performance Self-Healing Eutectic GaSn Nano-Droplet Room-Temperature Liquid Metal Battery

被引:1
作者
Li, Lian [1 ]
Wang, Kaizhao [1 ]
Wang, Kaijun [1 ]
Chen, Tianyou [1 ]
Wang, Jing [1 ]
Deng, Zhongshan [2 ]
Chen, Qingming [1 ]
Zhang, Weijun [1 ]
Hu, Jin [1 ]
机构
[1] Kunming Univ Sci & Technol, Coll Mat Sci & Engn, 121 St,Wenchang Rd 68, Kunming 650093, Peoples R China
[2] Univ Chinese Acad Sci, Sch Future Technol, Yuquan Rd 19, Beijing 100049, Peoples R China
关键词
core-shell structure; eGaSn nanodroplets; high-performance cathode; liquid metal batteries; titanium dioxide; ELECTROCHEMICAL PERFORMANCE; ENERGY-STORAGE; LITHIUM; LI; ELECTRODES; CELLULOSE; BINDER; ANODE;
D O I
10.1002/chem.202301774
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Gallium-based alloy liquid metal batteries currently face limitations such as volume expansion, unstable solid electrolyte interface (SEI) film and substantial capacity decay. In this study, amorphous titanium dioxide is used to coat eutectic GaSn nanodroplets (eGaSn NDs) to construct the core-shell structure of eGaSn@TiO2 nanodroplets (eGaSn@TiO2 NDs). The amorphous TiO2 shell (similar to 6.5 nm) formed a stable SEI film, alleviated the volume expansion, and provided electron/ion transport channels to achieve excellent cycling performance and high specific capacity. The resulting eGaSn@TiO2 NDs exhibited high capacities of 580, 540, 515, 485, 456 and 426 mAhg(-1) at 0.1, 0.2, 0.5, 1, 2 and 5 C, respectively. No significant decay was observed after more than 500 cycles with a capacity of 455 mAhg(-1) at 1 C. In situ X-ray diffraction (in situ XRD) was used to explore the lithiation mechanism of the eGaSn negative electrode during discharge. This study elucidates the design of advanced liquid alloy-based negative electrode materials for high-performance liquid metal batteries (LMBs).
引用
收藏
页数:8
相关论文
共 50 条
  • [11] 500 Wh kg-1Class Li Metal Battery Enabled by a Self-Organized Core-Shell Composite Anode
    Han, Bing
    Xu, Dongwei
    Chi, Shang-Sen
    He, Dongsheng
    Zhang, Zhen
    Du, Leilei
    Gu, Meng
    Wang, Chaoyang
    Meng, Hong
    Xu, Kang
    Zheng, Zijian
    Deng, Yonghong
    [J]. ADVANCED MATERIALS, 2020, 32 (42)
  • [12] Effects of volume strain due to Li-Sn compound formation on electrode potential in lithium-ion batteries
    Hirai, K.
    Ichitsubo, T.
    Uda, T.
    Miyazaki, A.
    Yagi, S.
    Matsubara, E.
    [J]. ACTA MATERIALIA, 2008, 56 (07) : 1539 - 1545
  • [13] Recycling Application of Li-MnO2 Batteries as Rechargeable Lithium-Air Batteries
    Hu, Yuxiang
    Zhang, Tianran
    Cheng, Fangyi
    Zhao, Qing
    Han, Xiaopeng
    Chen, Jun
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (14) : 4338 - 4343
  • [14] Synergistic Engineering of Heterointerface and Architecture in New-Type ZnS/Sn Heterostructures In Situ Encapsulated in Nitrogen-Doped Carbon Toward High-Efficient Lithium-Ion Storage
    Ke, Chengzhi
    Shao, Ruiwen
    Zhang, Yinggan
    Sun, Zhefei
    Qi, Shuo
    Zhang, Hehe
    Li, Miao
    Chen, Zhilin
    Wang, Yangsu
    Sa, Baisheng
    Lin, Haichen
    Liu, Haodong
    Wang, Ming-Sheng
    Chen, Shuangqiang
    Zhang, Qiaobao
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (38)
  • [15] Kidanu W. G., 2022, MATERIALS, P15
  • [16] Liquid Metal Batteries: Past, Present, and Future
    Kim, Hojong
    Boysen, Dane A.
    Newhouse, Jocelyn M.
    Spatocco, Brian L.
    Chung, Brice
    Burke, Paul J.
    Bradwell, David J.
    Jiang, Kai
    Tomaszowska, Alina A.
    Wang, Kangli
    Wei, Weifeng
    Ortiz, Luis A.
    Barriga, Salvador A.
    Poizeau, Sophie M.
    Sadoway, Donald R.
    [J]. CHEMICAL REVIEWS, 2013, 113 (03) : 2075 - 2099
  • [17] Role of electrochemically driven Cu nanograins in CuGa2 electrode
    Lee, Kyu T.
    Jung, Yoon S.
    Kwon, Ji Y.
    Kim, Jun H.
    Oh, Seung M.
    [J]. CHEMISTRY OF MATERIALS, 2008, 20 (02) : 447 - 453
  • [18] Liquid Metal Electrodes for Energy Storage Batteries
    Li, Haomiao
    Yin, Huayi
    Wang, Kangli
    Cheng, Shijie
    Jiang, Kai
    Sadoway, Donald R.
    [J]. ADVANCED ENERGY MATERIALS, 2016, 6 (14)
  • [19] From Materials to Cell: State-of-the-Art and Prospective Technologies for Lithium-Ion Battery Electrode Processing
    Li, Jianlin
    Fleetwood, James
    Hawley, W. Blake
    Kays, William
    [J]. CHEMICAL REVIEWS, 2022, 122 (01) : 903 - 956
  • [20] A self-healing liquid metal anode with PEO-Based polymer electrolytes for rechargeable lithium batteries
    Li, Tianyi
    Cui, Yi
    Fan, Longlong
    Zhou, Xinwei
    Ren, Yang
    De Andrade, Vincent
    De Carlo, Francesco
    Zhu, Likun
    [J]. APPLIED MATERIALS TODAY, 2020, 21