State-of-the-art review on energy and load forecasting in microgrids using artificial neural networks, machine learning, and deep learning techniques

被引:72
作者
Wazirali, Raniyah [1 ]
Yaghoubi, Elnaz [2 ]
Abujazar, Mohammed Shadi S. [3 ]
Ahmad, Rami [4 ]
Vakili, Amir Hossein [5 ]
机构
[1] Saudi Elect Univ, Coll Comp & Informat, Riyadh 11673, Saudi Arabia
[2] Karabuk Univ, Fac Engn, Dept Elect Elect Engn, Karabuk, Turkiye
[3] Al Aqsa Univ, Al Aqsa Community Intermediate Coll, PB 4051, Gaza, Palestine
[4] Amer Univ Emirates, Coll Comp Informat Technol, Dubai 503000, U Arab Emirates
[5] Karabuk Univ, Fac Engn, Dept Environm Engn, Karabuk, Turkiye
关键词
Artificial neural networks; Machine learning; Deep learning; Renewable energy forecasting; WIND-SPEED PREDICTION; EMPIRICAL MODE DECOMPOSITION; SOLAR-RADIATION; ENSEMBLE; CONSUMPTION; ALGORITHMS; GENERATION; CEEMDAN;
D O I
10.1016/j.epsr.2023.109792
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Forecasting renewable energy efficiency significantly impacts system management and operation because more precise forecasts mean reduced risk and improved stability and reliability of the network. There are several methods for forecasting and estimating energy production and demand. This paper discusses the significance of artificial neural network (ANN), machine learning (ML), and Deep Learning (DL) techniques in predicting renewable energy and load demand in various time horizons, including ultra-short-term, short-term, mediumterm, and long-term. The purpose of this study is to comprehensively review the methodologies and applications that utilize the latest developments in ANN, ML, and DL for the purpose of forecasting in microgrids, with the aim of providing a systematic analysis. For this purpose, a comprehensive database from the Web of Science was selected to gather relevant research studies on the topic. This paper provides a comparison and evaluation of all three techniques for forecasting in microgrids using tables. The techniques mentioned here assist electrical engineers in becoming aware of the drawbacks and advantages of ANN, ML, and DL in both load demand and renewable energy forecasting in microgrids, enabling them to choose the best techniques for establishing a sustainable and resilient microgrid ecosystem.
引用
收藏
页数:45
相关论文
共 50 条
  • [41] Trust Evaluation with Deep Learning in Online Social Networks: A State-of-the-Art Review
    Li, Zhiqi
    Fang, Weidong
    Zhu, Chunsheng
    Chen, Wentao
    Hao, Tianpeng
    Zhang, Wuxiong
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT III, ICIC 2024, 2024, 14864 : 3 - 12
  • [42] A review of deep learning for renewable energy forecasting
    Wang, Huaizhi
    Lei, Zhenxing
    Zhang, Xian
    Zhou, Bin
    Peng, Jianchun
    ENERGY CONVERSION AND MANAGEMENT, 2019, 198
  • [43] Machine learning for structural engineering: A state-of-the-art review
    Thai, Huu-Tai
    STRUCTURES, 2022, 38 : 448 - 491
  • [44] Forecasting diurnal cooling energy load for institutional buildings using Artificial Neural Networks
    Deb, Chirag
    Eang, Lee Siew
    Yang, Junjing
    Santamouris, Mattheos
    ENERGY AND BUILDINGS, 2016, 121 : 284 - 297
  • [45] Review of bankruptcy prediction using machine learning and deep learning techniques
    Qu, Yi
    Quan, Pei
    Lei, Minglong
    Shi, Yong
    7TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT (ITQM 2019): INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT BASED ON ARTIFICIAL INTELLIGENCE, 2019, 162 : 895 - 899
  • [46] Deep learning and the electrocardiogram: review of the current state-of-the-art
    Somani, Sulaiman
    Russak, Adam J.
    Richter, Felix
    Zhao, Shan
    Vaid, Akhil
    Chaudhry, Fayzan
    De Freitas, Jessica K.
    Naik, Nidhi
    Miotto, Riccardo
    Nadkarni, Girish N.
    Narula, Jagat
    Argulian, Edgar
    Glicksberg, Benjamin S.
    EUROPACE, 2021, 23 (08): : 1179 - 1191
  • [47] State-of-the-art review on deep learning in medical imaging
    Biswas, Mainak
    Kuppili, Venkatanareshbabu
    Saba, Luca
    Edla, Damodar Reddy
    Suri, Harman S.
    Cuadrado-Godia, Elisa
    Laird, John R.
    Marinhoe, Rui Tato
    Sanches, Joao M.
    Nicolaides, Andrew
    Suri, Jasjit S.
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2019, 24 : 392 - 426
  • [48] Endpoint prediction of BOF steelmaking based on state-of-the-art machine learning and deep learning algorithms
    Xie, Tian-yi
    Zhang, Fei
    Zhang, Jun-guo
    Xiang, Yong-guang
    Wang, Yi-xin
    HIGH TEMPERATURE MATERIALS AND PROCESSES, 2024, 43 (01)
  • [49] Deep learning techniques for rating prediction: a survey of the state-of-the-art
    Zahid Younas Khan
    Zhendong Niu
    Sulis Sandiwarno
    Rukundo Prince
    Artificial Intelligence Review, 2021, 54 : 95 - 135
  • [50] Machine Learning and the Future of Cardiovascular Care JACC State-of-the-Art Review
    Quer, Giorgio
    Arnaout, Ramy
    Henne, Michael
    Arnaout, Rima
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2021, 77 (03) : 300 - 313