State-of-the-art review on energy and load forecasting in microgrids using artificial neural networks, machine learning, and deep learning techniques

被引:71
作者
Wazirali, Raniyah [1 ]
Yaghoubi, Elnaz [2 ]
Abujazar, Mohammed Shadi S. [3 ]
Ahmad, Rami [4 ]
Vakili, Amir Hossein [5 ]
机构
[1] Saudi Elect Univ, Coll Comp & Informat, Riyadh 11673, Saudi Arabia
[2] Karabuk Univ, Fac Engn, Dept Elect Elect Engn, Karabuk, Turkiye
[3] Al Aqsa Univ, Al Aqsa Community Intermediate Coll, PB 4051, Gaza, Palestine
[4] Amer Univ Emirates, Coll Comp Informat Technol, Dubai 503000, U Arab Emirates
[5] Karabuk Univ, Fac Engn, Dept Environm Engn, Karabuk, Turkiye
关键词
Artificial neural networks; Machine learning; Deep learning; Renewable energy forecasting; WIND-SPEED PREDICTION; EMPIRICAL MODE DECOMPOSITION; SOLAR-RADIATION; ENSEMBLE; CONSUMPTION; ALGORITHMS; GENERATION; CEEMDAN;
D O I
10.1016/j.epsr.2023.109792
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Forecasting renewable energy efficiency significantly impacts system management and operation because more precise forecasts mean reduced risk and improved stability and reliability of the network. There are several methods for forecasting and estimating energy production and demand. This paper discusses the significance of artificial neural network (ANN), machine learning (ML), and Deep Learning (DL) techniques in predicting renewable energy and load demand in various time horizons, including ultra-short-term, short-term, mediumterm, and long-term. The purpose of this study is to comprehensively review the methodologies and applications that utilize the latest developments in ANN, ML, and DL for the purpose of forecasting in microgrids, with the aim of providing a systematic analysis. For this purpose, a comprehensive database from the Web of Science was selected to gather relevant research studies on the topic. This paper provides a comparison and evaluation of all three techniques for forecasting in microgrids using tables. The techniques mentioned here assist electrical engineers in becoming aware of the drawbacks and advantages of ANN, ML, and DL in both load demand and renewable energy forecasting in microgrids, enabling them to choose the best techniques for establishing a sustainable and resilient microgrid ecosystem.
引用
收藏
页数:45
相关论文
共 50 条
  • [31] Cancer detection and segmentation using machine learning and deep learning techniques: a review
    Rai, Hari Mohan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (09) : 27001 - 27035
  • [32] Automated machine learning: Review of the state-of-the-art and opportunities for healthcare
    Waring, Jonathan
    Lindvall, Charlotta
    Umeton, Renato
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2020, 104
  • [33] Artificial Neural Networks and Machine Learning techniques applied to Ground Penetrating Radar: A review
    Travassos, Xisto L.
    Avila, Sergio L.
    Ida, Nathan
    APPLIED COMPUTING AND INFORMATICS, 2021, 17 (02) : 296 - 308
  • [34] Deep Neural Networks for Energy Load Forecasting
    Amarasinghe, Kasun
    Marino, Daniel L.
    Manic, Milos
    2017 IEEE 26TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2017, : 1483 - 1488
  • [35] Machine learning and deep learning approach to Parkinson's disease detection: present state-of-the-art and a bibliometric review
    Sabherwal, Gauri
    Kaur, Amandeep
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (29) : 72997 - 73030
  • [36] Energy generation forecasting: elevating performance with machine and deep learning
    Mystakidis, Aristeidis
    Ntozi, Evangelia
    Afentoulis, Konstantinos
    Koukaras, Paraskevas
    Gkaidatzis, Paschalis
    Ioannidis, Dimosthenis
    Tjortjis, Christos
    Tzovaras, Dimitrios
    COMPUTING, 2023, 105 (08) : 1623 - 1645
  • [37] A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings
    Runge, Jason
    Zmeureanu, Radu
    ENERGIES, 2021, 14 (03)
  • [38] Deep Learning and Machine Learning Techniques for Credit Scoring: A Review
    Wube, Hana Demma
    Esubalew, Sintayehu Zekarias
    Weldesellasie, Firesew Fayiso
    Debelee, Taye Girma
    PAN-AFRICAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, PT II, PANAFRICON AI 2023, 2024, 2069 : 30 - 61
  • [39] Convergence of Photovoltaic Power Forecasting and Deep Learning: State-of-Art Review
    Massaoudi, Mohamed
    Chihi, Ines
    Abu-Rub, Haitham
    Refaat, Shady S.
    Oueslati, Fakhreddine S.
    IEEE ACCESS, 2021, 9 : 136593 - 136615
  • [40] Machine Learning in Healthcare Analytics: A State-of-the-Art Review
    Das, Surajit
    Nayak, Samaleswari P.
    Sahoo, Biswajit
    Nayak, Sarat Chandra
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2024, 31 (07) : 3923 - 3962