Plug-and-Play Priors for Multi-Shot Compressive Hyperspectral Imaging

被引:4
作者
Xie, Ting [1 ]
Liu, Licheng [2 ]
Zhuang, Lina [3 ]
机构
[1] Hunan Normal Univ, Coll Engn & Design, Changsha 410081, Peoples R China
[2] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Computat Opt Imaging Technol, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
Image reconstruction; Hyperspectral imaging; Sensors; Apertures; Reconstruction algorithms; Image coding; Optimization; Coded aperture snapshot spectral imaging (CASSI); multi-shot CASSI; primal-dual algorithm with linesearch; plug-and-play (PnP); subspaced-based nonlocal reweighted low-rank (SNRL) denoiser; CODED-APERTURE DESIGN; IMPLEMENTATION; RECOVERY;
D O I
10.1109/TIP.2023.3315141
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-shot coded aperture snapshot spectral imaging (CASSI) uses multiple measurement snapshots to encode the three-dimensional hyperspectral image (HSI). Increasing the number of snapshots will multiply the number of measurements, making CASSI system more appropriate for detailed spatial or spectrally rich scenes. However, the reconstruction algorithms still face the challenge of being ineffective or inflexible. In this paper, we propose a plug-and-play (PnP) method that uses denoiser as priors for multi-shot CASSI. Specifically, the proposed PnP method is based on the primal-dual algorithm with linesearch (PDAL), which makes it flexible and can be used for any multi-shot CASSI mechanisms. Furthermore, a new subspaced-based nonlocal reweighted low-rank (SNRL) denoiser is presented to utilize the global spectral correlation and nonlocal self-similarity priors of HSI. By integrating the SNRL denoiser into PnP-PDAL, we show the balloons ( $512\times 512\times31$ ) in CAVE dataset recovered from two snapshots compressive measurements with MPSNR above 50 dB. Experimental results demonstrate that our proposed method leads to significant improvements compared to the current state-of-the-art methods.
引用
收藏
页码:5326 / 5339
页数:14
相关论文
共 55 条
  • [1] Compressive Coded Aperture Spectral Imaging
    Arce, Gonzalo R.
    Brady, David J.
    Carin, Lawrence
    Arguello, Henry
    Kittle, David S.
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (01) : 105 - 115
  • [2] Arguello H, 2010, EUR SIGNAL PR CONF, P1434
  • [3] Higher-order computational model for coded aperture spectral imaging
    Arguello, Henry
    Rueda, Hoover
    Wu, Yuehao
    Prather, Dennis W.
    Arce, Gonzalo R.
    [J]. APPLIED OPTICS, 2013, 52 (10) : D12 - D21
  • [4] Rank Minimization Code Aperture Design for Spectrally Selective Compressive Imaging
    Arguello, Henry
    Arce, Gonzalo R.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (03) : 941 - 954
  • [5] Compressive spectral image reconstruction using deep prior and low-rank tensor representation
    Bacca, Jorge
    Fonseca, Yesid
    Arguello, Henry
    [J]. APPLIED OPTICS, 2021, 60 (14) : 4197 - 4207
  • [6] On the use of deep learning for computational imaging
    Barbastathis, George
    Ozcan, Aydogan
    Situ, Guohai
    [J]. OPTICA, 2019, 6 (08): : 921 - 943
  • [7] BASEDOW RW, 1995, P SOC PHOTO-OPT INS, V2480, P258, DOI 10.1117/12.210881
  • [8] Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
  • [9] A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration
    Bioucas-Dias, Jose M.
    Figueiredo, Mario A. T.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (12) : 2992 - 3004
  • [10] Hyperspectral subspace identification
    Bioucas-Dias, Jose M.
    Nascimento, Jose M. P.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (08): : 2435 - 2445