Stability, bifurcation analysis and pattern formation for a nonlinear discrete predator-prey system

被引:4
作者
Han, Xiaoling [1 ]
Lei, Ceyu [1 ]
机构
[1] Northwest Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
Discrete system; Predator-prey system; Stability; Bifurcation; Turing pattern; MODEL; CHAOS;
D O I
10.1016/j.chaos.2023.113710
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work investigates a discrete predator-prey system with periodic boundary conditions. First, the existence, local stability, and global stability of the equilibrium points of the system are investigated. Second, we get the criteria for flip bifurcation and Neimark-Sacker bifurcation at the system's equilibrium points, and we obtain the conditions for the Turing instability of the discrete diffusion system when the population self-diffusion occurs. Finally, we use numerical simulation to investigate the effect of the diffusion coefficient and the natural growth rate of prey on system dynamics.
引用
收藏
页数:9
相关论文
共 35 条
  • [1] A predator-prey system with generalized Holling type IV functional response and Allee effects in prey
    Arsie, Alessandro
    Kottegoda, Chanaka
    Shan, Chunhua
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 309 : 704 - 740
  • [2] Nontrivial solutions for a nonlinear discrete elliptic equation with periodic boundary conditions
    Bai, Liang
    Zhang, Guang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 210 (02) : 321 - 333
  • [3] Complex Dynamics of a Discrete-Time Prey-Predator System with Leslie Type: Stability, Bifurcation Analyses and Chaos
    Baydemir, Pinar
    Merdan, Huseyin
    Karaoglu, Esra
    Sucu, Gokce
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (10):
  • [4] Britton NF, 2003, Essential Mathematical Biology
  • [5] A stochastic predator-prey system with modified LG-Holling type II functional response
    Chen, Xingzhi
    Tian, Baodan
    Xu, Xin
    Zhang, Hailan
    Li, Dong
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 203 : 449 - 485
  • [6] Bifurcation analysis of a discrete-time ratio-dependent predator-prey model with Allee Effect
    Cheng, Lifang
    Cao, Hongjun
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 38 : 288 - 302
  • [7] Cintra W, 2021, DISCRETE CONT DYN-B, V26, P1
  • [8] Pattern formation in a space- and time-discrete predator-prey system with a strong Allee effect
    Diaz Rodrigues, Luiz Alberto
    Mistro, Diomar Cristina
    Petrovskii, Sergei
    [J]. THEORETICAL ECOLOGY, 2012, 5 (03) : 341 - 362
  • [9] Elaydi SN., 2007, DISCRETE CHAOS APPL, DOI DOI 10.1201/9781420011043
  • [10] Finite-difference schemes for reaction-diffusion equations modeling predator-prey interactions in MATLAB
    Garvie, Marcus R.
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2007, 69 (03) : 931 - 956