Efficient Catalysis of Ultrathin Two-Dimensional Fe2O3-CoP Heterostructure Nanosheets for Polysulfide Redox Reactions

被引:20
作者
Pu, Jun [1 ]
Tan, Yun [1 ]
Wang, Tao [1 ]
Gong, Wenbin [2 ]
Gu, Cuiping [1 ]
Xue, Pan [3 ]
Wang, Zhenghua [1 ]
Yao, Yagang [4 ,5 ,6 ]
机构
[1] Anhui Normal Univ, Coll Chem & Mat Sci, Key Lab Funct Mol Solids, Minist Educ,Anhui Prov Engn Lab New Energy Vehicle, Wuhu 241002, Peoples R China
[2] Xuzhou Univ Technol, Sch Phys & Energy, Xuzhou 221018, Peoples R China
[3] Yangzhou Univ, Coll Chem & Chem Engn, Yangzhou 225000, Peoples R China
[4] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Jiangsu Key Lab Artificial Funct Mat, Natl Lab Solid State Microstruct,Coll Engn & Appl, Nanjing 210093, Peoples R China
[5] Chinese Acad Sci, Suzhou Inst Nanotech & Nanob Nanchang, Div Nanomat, Nanchang 330200, Peoples R China
[6] Chinese Acad Sci, Suzhou Inst Nanotech & Nanob Nanchang, Jiangxi Key Lab Carbonene Mat, Nanchang 330200, Peoples R China
基金
中国国家自然科学基金;
关键词
2D structures; catalysis; Fe2O3-CoP heterointerfaces; Li-S batteries; multifunctional separators; MODIFIED SEPARATOR; SULFUR; CONVERSION; HOST;
D O I
10.1002/smll.202304847
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The "shuttle effect" and slow redox reactions of Li-S batteries limit their practical application. To solve these problems, a judicious catalyst design for improved battery cycle life and rate performance is essential. Herein, this issue is addressed by modifying the Li-S battery separator using a 2D Fe2O3-CoP heterostructure that combines the dual functions of polar Fe2O3 and high-conductivity CoP. The synthesized ultrathin nanostructure exposes well-dispersed active sites and shortens the ion diffusion paths. Theoretical calculations, electrochemical tests, and in situ Raman spectroscopy measurements reveal that the heterostructure facilitates the inhibition of polysulfide shuttling and enhances the electrode kinetics. A sulfur cathode constructed using the Fe2O3-CoP-based separator provides an astonishing capacity of 1346 mAh g(-1) at 0.2 C and a high capacity retention of approximate to 84.5%. Even at a high sulfur loading of 5.42 mg cm(-2), it shows an area capacity of 5.90 mAh cm(-2). This study provides useful insights into the design of new catalytic materials for Li-S batteries.
引用
收藏
页数:12
相关论文
共 60 条
[1]   Generalized Synthesis of Metal Oxide Nanosheets and Their Application as Li-Ion Battery Anodes [J].
AbdelHamid, Ayman A. ;
Yu, Yue ;
Yang, Jinhua ;
Ying, Jackie Y. .
ADVANCED MATERIALS, 2017, 29 (32)
[2]   A long-life lithium-sulphur battery by integrating zinc-organic framework based separator [J].
Bai, Songyan ;
Zhu, Kai ;
Wu, Shichao ;
Wang, Yarong ;
Yi, Jin ;
Ishida, Masayoshi ;
Zhou, Haoshen .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (43) :16812-16817
[3]   Interfaces-dominated Li2S nucleation behavior enabled by heterostructure catalyst for fast kinetics Li-S batteries [J].
Cai, Da-Qian ;
Yang, Jin-Lin ;
Liu, Ting ;
Zhao, Shi-Xi ;
Cao, Guozhong .
NANO ENERGY, 2021, 89
[4]   Cascade Delivery to Golgi Apparatus and On-Site Formation of Subcellular Drug Reservoir for Cancer Metastasis Suppression [J].
Chen, Liqiang ;
Jiang, Peihang ;
Shen, Xinran ;
Lyu, Jiayan ;
Liu, Chendong ;
Li, Lian ;
Huang, Yuan .
SMALL, 2023, 19 (11)
[5]   Pore-space-partitioned MOF separator promotes high-sulfur-loading Li-S batteries with intensified rate capability and cycling life [J].
Chen, Yilong ;
Zhang, Linjie ;
Pan, Hui ;
Zhang, Jindan ;
Xiang, Shengchang ;
Cheng, Zhibin ;
Zhang, Zhangjing .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (47) :26929-26938
[6]   Progress on the Critical Parameters for Lithium-Sulfur Batteries to be Practically Viable [J].
Chung, Sheng-Heng ;
Chang, Chi-Hao ;
Manthiram, Arumugam .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (28)
[7]   Design of CoP-CoO heterostructure to enhance the polysulfide redoxconversion for lithium-sulfur batteries [J].
Duan, Donghong ;
Xing, Chongzhi ;
Chen, Kaixin ;
Zhou, Xianxian ;
Liu, Shibin .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 920
[8]   Combination of heterostructure with oxygen vacancies in Co@CoO1-x nanosheets array for high-performance lithium sulfur batteries [J].
Fang, Daliang ;
Wang, Guangzhao ;
Huang, Shaozhuan ;
Li, Tian Chen ;
Yu, Juezhi ;
Xiong, Dongbin ;
Yan, Dong ;
Li, Xue Liang ;
Zhang, Jintao ;
Lim, Yew Von ;
Yang, Shengyuan A. ;
Yang, Hui Ying .
CHEMICAL ENGINEERING JOURNAL, 2021, 411 (411)
[9]   Vacancy-Defect Topological Insulators Bi2Te3-x Embedded in N and B Co-Doped 1D Carbon Nanorods Using Ionic Liquid Dopants for Kinetics-Enhanced Li-S Batteries [J].
Hu, Shunyou ;
Huang, Xueyan ;
Zhang, Ling ;
Li, Guanglei ;
Chen, Shengmin ;
Zhang, Jiaheng ;
Liu, Xiangli .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (20)
[10]   Strategies toward High-Loading Lithium-Sulfur Battery [J].
Hu, Yin ;
Chen, Wei ;
Lei, Tianyu ;
Jiao, Yu ;
Huang, Jianwen ;
Hu, Anjun ;
Gong, Chuanhui ;
Yan, Chaoyi ;
Wang, Xianfu ;
Xiong, Jie .
ADVANCED ENERGY MATERIALS, 2020, 10 (17)