Complete bipartite graphs without small rainbow stars

被引:2
作者
Chen, Weizhen [1 ]
Ji, Meng [2 ]
Mao, Yaping [3 ]
Wei, Meiqin [4 ]
机构
[1] Qinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R China
[2] Tianjin Normal Univ, Coll Math Sci, Tianjin, Peoples R China
[3] Yokohama Natl Univ, Fac Environm & Informat Sci, 79-2 Tokiwadai,Hodogaya Ku, Yokohama 2408501, Japan
[4] Shanghai Maritime Univ, Coll Arts & Sci, Shanghai 201306, Peoples R China
基金
美国国家科学基金会;
关键词
Ramsey theory; Gallai-Ramsey number; Bipartite Gallai-Ramsey number; GALLAI-RAMSEY NUMBERS;
D O I
10.1016/j.dam.2023.06.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The k-edge-colored bipartite Gallai-Ramsey number bgrk(G : H) is defined as the minimum integer n such that n2 > k and for every N > n, every edge-coloring (using all k colors) of complete bipartite graph KN,N contains a rainbow copy of G or a monochromatic copy of H. In this paper, we first study the structural theorem on the complete bipartite graph Kn,n with no rainbow copy of K1,3. Next, we utilize the results to prove the exact values of bgrk(P4 : H), bgrk(P5 : H), bgrk(K1,3 : H), where H is a various union of cycles and paths and stars. & COPY; 2023 Published by Elsevier B.V.
引用
收藏
页码:14 / 20
页数:7
相关论文
共 28 条
  • [1] Bondy J.A., 2008, GRAPH THEORY, V244, DOI DOI 10.1007/978-1-84628-970-5
  • [2] Cameron K, 1997, J GRAPH THEOR, V26, P9, DOI 10.1002/(SICI)1097-0118(199709)26:1<9::AID-JGT2>3.3.CO
  • [3] 2-3
  • [4] Bipartite rainbow Ramsey numbers
    Eroh, L
    Oellermann, OR
    [J]. DISCRETE MATHEMATICS, 2004, 277 (1-3) : 57 - 72
  • [5] Faudree RJ, 2010, AUSTRALAS J COMB, V46, P269
  • [6] PATH-PATH RAMSEY-TYPE NUMBERS FOR COMPLETE BIPARTITE GRAPH
    FAUDREE, RJ
    SCHELP, RH
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 19 (02) : 161 - 173
  • [7] Fujita S., 2014, Theory Appl. Graphs
  • [8] Extensions of Gallai-Ramsey results
    Fujita, Shinya
    Magnant, Colton
    [J]. JOURNAL OF GRAPH THEORY, 2012, 70 (04) : 404 - 426
  • [9] Gallai-Ramsey numbers for cycles
    Fujita, Shinya
    Magnant, Colton
    [J]. DISCRETE MATHEMATICS, 2011, 311 (13) : 1247 - 1254
  • [10] TRANSITIV ORIENTIERBARE GRAPHEN
    GALLAI, T
    [J]. ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1967, 18 (1-2): : 25 - &