Magic state distillation and cost analysis in fault-tolerant universal quantum computation

被引:2
作者
Liu, Yiting [1 ]
Ma, Zhi [1 ]
Luo, Lan [1 ]
Du, Chao [1 ]
Fei, Yangyang [1 ]
Wang, Hong [1 ]
Duan, Qianheng [1 ]
Yang, Jing [2 ]
机构
[1] Henan Key Lab Network Cryptog Technol, Zhengzhou 450001, Henan, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
universal quantum computation; fault-tolerant quantum computation; magic states; stabilizer codes; surface code; magic states distillation; REED-MULLER CODES; ERROR-CORRECTING CODES; NOISE THRESHOLD;
D O I
10.1088/2058-9565/ace6ca
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Magic states have been widely studied in recent years as resource states that help quantum computers achieve fault-tolerant universal quantum computing. The fault-tolerant quantum computing requires fault-tolerant implementation of a set of universal logical gates. Stabilizer code, as a commonly used error correcting code with good properties, can apply the Clifford gates transversally which is fault tolerant. But only Clifford gates cannot realize universal computation. Magic states are introduced to construct non-Clifford gates that combine with Clifford operations to achieve universal quantum computing. Since the preparation of quantum states is inevitably accompanied by noise, preparing the magic state with high fidelity and low overhead is the crucial problem to realizing universal quantum computation. In this paper, we survey the related literature in the past 20 years and introduce the common types of magic states, the protocols to obtain high-fidelity magic states, and overhead analysis for these protocols. Finally, we discuss the future directions of this field.
引用
收藏
页数:38
相关论文
共 152 条
[1]   Improved simulation of stabilizer circuits [J].
Aaronson, S ;
Gottesman, D .
PHYSICAL REVIEW A, 2004, 70 (05) :052328-1
[2]  
Aharonov D., 1997, P 20 9 ANN ACM S THE, P176
[3]  
Aliferis P, 2006, QUANTUM INF COMPUT, V6, P97
[4]   Subsystem fault tolerance with the Bacon-Shor code [J].
Aliferis, Panos ;
Cross, Andrew W. .
PHYSICAL REVIEW LETTERS, 2007, 98 (22)
[5]   Fault-Tolerant Conversion between the Steane and Reed-Muller Quantum Codes [J].
Anderson, Jonas T. ;
Duclos-Cianci, Guillaume ;
Poulin, David .
PHYSICAL REVIEW LETTERS, 2014, 113 (08)
[6]   Qutrit magic state distillation [J].
Anwar, Hussain ;
Campbell, Earl T. ;
Browne, Dan E. .
NEW JOURNAL OF PHYSICS, 2012, 14
[7]   The XZZX surface code [J].
Ataides, J. Pablo Bonilla ;
Tuckett, David K. ;
Bartlett, Stephen D. ;
Flammia, Steven T. ;
Brown, Benjamin J. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[8]  
Bravyi SB, 1998, Arxiv, DOI [arXiv:quant-ph/9811052, 10.48550/ARXIV.QUANT-PH/9811052, DOI 10.48550/ARXIV.QUANT-PH/9811052]
[9]   Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity [J].
Babbush, Ryan ;
Gidney, Craig ;
Berry, Dominic W. ;
Wiebe, Nathan ;
McClean, Jarrod ;
Paler, Alexandra ;
Fowler, Austin ;
Neven, Hartmut .
PHYSICAL REVIEW X, 2018, 8 (04)
[10]   Operator quantum error-correcting subsystems for self-correcting quantum memories [J].
Bacon, D .
PHYSICAL REVIEW A, 2006, 73 (01)