Cartesian Coherent Differential Categories

被引:1
作者
Thomas, Ehrhard [1 ]
Aymeric, Walch [2 ]
机构
[1] Univ Paris Cite, CNRS, Inria, IRIF, F-75013 Paris, France
[2] Univ Paris Cite, CNRS, IRIF, F-75013 Paris, France
来源
2023 38TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, LICS | 2023年
关键词
MONADS;
D O I
10.1109/LICS56636.2023.10175717
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We extend to general cartesian categories the idea of Coherent Differentiation recently introduced by Ehrhard in the setting of categorical models of Linear Logic. The first ingredient is a summability structure which induces a partial left-additive structure on the category. Additional functoriality and naturality assumptions on this summability structure implement a differential calculus which can also be presented in a formalism close to Blute, Cockett and Seely's cartesian differential categories. We show that a simple term language equipped with a natural notion of differentiation can easily be interpreted in such a category.
引用
收藏
页数:13
相关论文
共 22 条
  • [1] Monads on Higher Monoidal Categories
    Aguiar, Marcelo
    Haim, Mariana
    Lopez Franco, Ignacio
    [J]. APPLIED CATEGORICAL STRUCTURES, 2018, 26 (03) : 413 - 458
  • [2] PARTIALLY ADDITIVE CATEGORIES AND FLOW-DIAGRAM SEMANTICS
    ARBIB, MA
    MANES, EG
    [J]. JOURNAL OF ALGEBRA, 1980, 62 (01) : 203 - 227
  • [3] Differential categories
    Blute, R. F.
    Cockett, J. R. B.
    Seely, R. A. G.
    [J]. MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2006, 16 (06) : 1049 - 1083
  • [4] Blute RF, 2009, THEOR APPL CATEG, V22, P622
  • [5] Differential Structure, Tangent Structure, and SDG
    Cockett, J. R. B.
    Cruttwell, G. S. H.
    [J]. APPLIED CATEGORICAL STRUCTURES, 2014, 22 (02) : 331 - 417
  • [6] Probabilistic Stable Functions on Discrete Cones are Power Series
    Crubille, Raphaelle
    [J]. LICS'18: PROCEEDINGS OF THE 33RD ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, 2018, : 275 - 284
  • [7] Probabilistic coherence spaces as a model of higher-order probabilistic computation
    Danos, Vincent
    Ehrhard, Thomas
    [J]. INFORMATION AND COMPUTATION, 2011, 209 (06) : 966 - 991
  • [8] The differential lambda-calculus
    Ehrhard, T
    Regnier, L
    [J]. THEORETICAL COMPUTER SCIENCE, 2003, 309 (1-3) : 1 - 41
  • [9] Ehrhard T., 2021, MATH STRUCT COMP SCI
  • [10] Ehrhard T, 2023, Arxiv, DOI [arXiv:2303.06952, 10.48550/arXiv.2303.06952, DOI 10.48550/ARXIV.2303.06952]