Identification of Potential Biomarkers in Stomach Adenocarcinoma using Machine Learning Approaches

被引:8
作者
Nazari, Elham [1 ,2 ]
Pourali, Ghazaleh [1 ]
Khazaei, Majid [1 ]
Asadnia, Alireza [1 ,3 ]
Dashtiahangar, Mohammad [4 ]
Mohit, Reza [5 ]
Maftooh, Mina [1 ]
Nassiri, Mohammadreza [6 ]
Hassanian, Seyed Mahdi [1 ,2 ]
Ghayour-Mobarhan, Majid [1 ]
Ferns, Gordon A. A. [7 ]
Shahidsales, Soodabeh [8 ]
Avan, Amir [1 ,2 ,3 ]
机构
[1] Mashhad Univ Med Sci, Metab Syndrome Res Ctr, Mashhad, Iran
[2] Mashhad Univ Med Sci, Basic Sci Res Inst, Mashhad, Iran
[3] Mashhad Univ Med Sci, Med Genet Res Ctr, Mashhad, Iran
[4] Gonabad Univ Med Sci, Sch Med, Gonabad, Iran
[5] Bushehr Univ Med Sci, Dept Anesthesia, Bushehr, Iran
[6] Ferdowsi Univ Mashhad, Res Inst Biotechnol, Recombinant Prot Res Grp, Mashhad, Iran
[7] Brighton & Sussex Med Sch, Div Med Educ, Brighton BN1 9PH, Sussex, England
[8] Mashhad Univ Med Sci, Canc Res Ctr, Mashhad, Iran
关键词
Stomach adenocarcinoma; machine learning; biomarker; bioinformatics analysis; RNA-sequencing; TCGA; FOLATE CYCLE ENZYME; GASTRIC-CANCER; MTHFD1L; EXPRESSION; FAMILY; GENES;
D O I
10.2174/1574893618666230227103427
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background Stomach adenocarcinoma (STAD) is a common cancer with poor clinical outcomes globally. Due to a lack of early diagnostic markers of disease, the majority of patients are diagnosed at an advanced stage. Objective The aim of the present study is to provide some new insights into the available biomarkers for patients with STAD using bioinformatics. Methods RNA-Sequencing and other relevant data of patients with STAD from The Cancer Genome Atlas (TCGA) database were evaluated to identify differentially expressed genes (DEGs). Then, Machine Learning algorithms were undertaken to predict biomarkers. Additionally, Kaplan-Meier analysis was used to detect prognostic biomarkers. Furthermore, the Gene Ontology and Reactome pathways, protein-protein interactions (PPI), multiple sequence alignment, phylogenetic mapping, and correlation between clinical parameters were evaluated. Results The results showed 61 DEGs, and the key dysregulated genes associated with STAD are MTHFD1L (Methylenetetrahydrofolate dehydrogenase 1-like), ZWILCH (Zwilch Kinetochore Protein), RCC2 (Regulator of chromosome condensation 2), DPT (Dermatopontin), GCOM1 (GRINL1A complex locus 1), and CLEC3B (C-Type Lectin Domain Family 3 Member B). Moreover, the survival analysis reported ASPA (Aspartoacylase) as a prognostic marker. Conclusion Our study provides a proof of concept of the potential value of ASPA as a prognostic factor in STAD, requiring further functional investigations to explore the value of emerging markers.
引用
收藏
页码:320 / 333
页数:14
相关论文
共 62 条
[1]   MTHFD1L, A Folate Cycle Enzyme, Is Involved in Progression of Colorectal Cancer [J].
Agarwal, Sumit ;
Behring, Michael ;
Hale, Kevin ;
Al Diffalha, Sameer ;
Wang, Kai ;
Manne, Upender ;
Varambally, Sooryanarayana .
TRANSLATIONAL ONCOLOGY, 2019, 12 (11) :1461-1467
[2]   Symbiotic Relationship Between Machine Learning and Industry 4.0: A Review [J].
Azeem, Mohd ;
Haleem, Abid ;
Javaid, Mohd .
JOURNAL OF INDUSTRIAL INTEGRATION AND MANAGEMENT-INNOVATION AND ENTREPRENEURSHIP, 2022, 07 (03) :401-433
[3]   Metabolomic Characterization of Ovarian Epithelial Carcinomas by HRMAS-NMR Spectroscopy [J].
Ben Sellem, D. ;
Elbayed, K. ;
Neuville, A. ;
Moussallieh, F. -M. ;
Lang-Averous, G. ;
Piotto, M. ;
Bellocq, J. -P. ;
Namer, I. J. .
JOURNAL OF ONCOLOGY, 2011, 2011
[4]   Regulator of Chromosome Condensation 2 Identifies High-Risk Patients within Both Major Phenotypes of Colorectal Cancer [J].
Bruun, Jarle ;
Kolberg, Matthias ;
Ahlquist, Terje C. ;
Royrvik, Ellen C. ;
Nome, Torfinn ;
Leithe, Edward ;
Lind, Guro E. ;
Merok, Marianne A. ;
Rognum, Torleiv O. ;
Bjorkoy, Geir ;
Johansen, Terje ;
Lindblom, Annika ;
Sun, Xiao-Feng ;
Svindland, Aud ;
Liestol, Knut ;
Nesbakken, Arild ;
Skotheim, Rolf I. ;
Lothe, Ragnhild A. .
CLINICAL CANCER RESEARCH, 2015, 21 (16) :3759-3770
[5]  
Chen Ji, 2022, 2022 10th International Conference on Bioinformatics and Computational Biology (ICBCB), P112, DOI 10.1109/ICBCB55259.2022.9802469
[6]   Bioinformatics Analysis of Prognostic miRNA Signature and Potential Critical Genes in Colon Cancer [J].
Chen, Weigang ;
Gao, Chang ;
Liu, Yong ;
Wen, Ying ;
Hong, Xiaoling ;
Huang, Zunnan .
FRONTIERS IN GENETICS, 2020, 11
[7]   Development and validation of a prognostic and predictive 32-gene signature for gastric cancer [J].
Cheong, Jae-Ho ;
Wang, Sam C. ;
Park, Sunho ;
Porembka, Matthew R. ;
Christie, Alana L. ;
Kim, Hyunki ;
Kim, Hyo Song ;
Zhu, Hong ;
Hyung, Woo Jin ;
Noh, Sung Hoon ;
Hu, Bo ;
Hong, Changjin ;
Karalis, John D. ;
Kim, In-Ho ;
Lee, Sung Hak ;
Hwang, Tae Hyun .
NATURE COMMUNICATIONS, 2022, 13 (01)
[8]   Expression and prognostic significance of thrombospondin gene family in gastric cancer [J].
Deng, Long-Ying ;
Zeng, Xiang-Fu ;
Tang, Dan ;
Deng, Wei ;
Liu, Hong-Fu ;
Xie, Yuan-Kang .
JOURNAL OF GASTROINTESTINAL ONCOLOGY, 2021, 12 (02) :355-+
[9]   Computational guided identification of novel potent inhibitors of N-terminal domain of nucleocapsid protein of severe acute respiratory syndrome coronavirus 2 [J].
Dhankhar, Poonam ;
Dalal, Vikram ;
Singh, Vishakha ;
Tomar, Shailly ;
Kumar, Pravindra .
JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2022, 40 (09) :4084-4099
[10]   Identification of Metabolites in the Normal Ovary and Their Transformation in Primary and Metastatic Ovarian Cancer [J].
Fong, Miranda Y. ;
McDunn, Jonathan ;
Kakar, Sham S. .
PLOS ONE, 2011, 6 (05)